Theory of Bessel potentials. II
Robert Adams; Nachman Aronszajn; K. T. Smith
Annales de l'institut Fourier (1967)
- Volume: 17, Issue: 2, page 1-135
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topAdams, Robert, Aronszajn, Nachman, and Smith, K. T.. "Theory of Bessel potentials. II." Annales de l'institut Fourier 17.2 (1967): 1-135. <http://eudml.org/doc/73931>.
@article{Adams1967,
author = {Adams, Robert, Aronszajn, Nachman, Smith, K. T.},
journal = {Annales de l'institut Fourier},
keywords = {Bessel potentials},
language = {eng},
number = {2},
pages = {1-135},
publisher = {Association des Annales de l'Institut Fourier},
title = {Theory of Bessel potentials. II},
url = {http://eudml.org/doc/73931},
volume = {17},
year = {1967},
}
TY - JOUR
AU - Adams, Robert
AU - Aronszajn, Nachman
AU - Smith, K. T.
TI - Theory of Bessel potentials. II
JO - Annales de l'institut Fourier
PY - 1967
PB - Association des Annales de l'Institut Fourier
VL - 17
IS - 2
SP - 1
EP - 135
LA - eng
KW - Bessel potentials
UR - http://eudml.org/doc/73931
ER -
References
top- [1] N. ARONSZAJN and H. G. HARDY, Properties of a class of double integrals, Ann. of Math. 46 (1945), 220-241. Zbl0060.14202MR7,116b
- [2] N. ARONSZAJN, F. MULLA et P. SZEPTYCKI, On spaces of potentials connected with Lp classes, Ann. de l'Inst. Fourier, Vol. XIII (1963), 211-306. Zbl0121.09604MR31 #5076
- [3] O. V. BESOV, On a family of functional spaces, Theorems about restrictions and extensions, Dokl. Akad. Nauk SSSR, 126, 6 (1959) 1163-1165. Zbl0097.09701
- [4] A. P. CALDERON, Lebesgue spaces of differentiable functions and distributions, Proc. of Symposium in Pure Math. Vol. IV, Partial Differential Equations (1961), 33-49. Zbl0195.41103MR26 #603
- [5] A. P. CALDERON, Proc. Symposium Diff. Equations, Berkeley, Calif. 1960.
- [6] R. COURANT and D. HILBERT, Methoden der Mathematischen Physik, 2 Band Springer Verlag, 1938. Zbl0156.23201
- [7] E. GAGLIARDO, Caratterizzazioni della tracce sulla frontiera relative ad alcune classi di funzioni in n variabili, Rendiconti Sem. Mat. Padova, Vol. 27 (1957), 248-305. Zbl0087.10902MR21 #1525
- [8] M. R. HESTENES, Extension of the range of a differentiable function, Duke Math. Journ. Vol. 8 (1941), 183-192. Zbl0024.38602MR2,219cJFM67.0191.03
- [9] L. LICHTENSTEIN, Eine elementare Bemerkung zur reellen Analysis, Math. Zeitschrift, Vol. 30 (1929), 794-795. Zbl55.0134.04JFM55.0134.04
- [10] S. M. NIKOLSKII, Theorems about restrictions, extensions and approximation of differentiable functions of several variables (Survey Article), Usp. Mat. Nauk. Vol. 16, 5 (1961), 63-114.
- [11] R. T. SEELEY, Extension of C∞ functions defined in a half-space, Proc. Amer. Math. Soc. 15 (1964), 625-626. Zbl0127.28403MR29 #2676
- [12] L. I. SLOBODECKII, Spaces of S. L. Sobolev of fractional order, Dokl. Akad. Nauk. SSSR., Vol. 118 (1958), 243-246. Zbl0088.30302
- [13] M. H. TAIBLESON, Smoothness and differentiability conditions for functions and distributions in En, Dissertation. University of Chicago 1962.
Citations in EuDML Documents
top- Denise Chenais, Sur une famille de variétés à bord lipschitziennes. Application à un problème d'identification de domaines
- Nachman Aronszajn, R. D. Brown, R. S. Butcher, Construction of the solutions of boundary value problems for the biharmonic operator in a rectangle
- Robert Adams, Nachman Aronszajn, M. S. Hanna, Theory of Bessel potentials. III : potentials on regular manifolds
- A. El Kolli, épaisseur dans les espaces de Sobolev avec poids
- Nachman Aronszajn, Pawel Szeptycki, Theory of Bessel potentials. IV. Potentials on subcartesian spaces with singularities of polyhedral type
- Alf Jonsson, Hans Wallin, A Whitney extension theorem in and Besov spaces
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.