Theory of Bessel potentials. II

Robert Adams; Nachman Aronszajn; K. T. Smith

Annales de l'institut Fourier (1967)

  • Volume: 17, Issue: 2, page 1-135
  • ISSN: 0373-0956

How to cite

top

Adams, Robert, Aronszajn, Nachman, and Smith, K. T.. "Theory of Bessel potentials. II." Annales de l'institut Fourier 17.2 (1967): 1-135. <http://eudml.org/doc/73931>.

@article{Adams1967,
author = {Adams, Robert, Aronszajn, Nachman, Smith, K. T.},
journal = {Annales de l'institut Fourier},
keywords = {Bessel potentials},
language = {eng},
number = {2},
pages = {1-135},
publisher = {Association des Annales de l'Institut Fourier},
title = {Theory of Bessel potentials. II},
url = {http://eudml.org/doc/73931},
volume = {17},
year = {1967},
}

TY - JOUR
AU - Adams, Robert
AU - Aronszajn, Nachman
AU - Smith, K. T.
TI - Theory of Bessel potentials. II
JO - Annales de l'institut Fourier
PY - 1967
PB - Association des Annales de l'Institut Fourier
VL - 17
IS - 2
SP - 1
EP - 135
LA - eng
KW - Bessel potentials
UR - http://eudml.org/doc/73931
ER -

References

top
  1. [1] N. ARONSZAJN and H. G. HARDY, Properties of a class of double integrals, Ann. of Math. 46 (1945), 220-241. Zbl0060.14202MR7,116b
  2. [2] N. ARONSZAJN, F. MULLA et P. SZEPTYCKI, On spaces of potentials connected with Lp classes, Ann. de l'Inst. Fourier, Vol. XIII (1963), 211-306. Zbl0121.09604MR31 #5076
  3. [3] O. V. BESOV, On a family of functional spaces, Theorems about restrictions and extensions, Dokl. Akad. Nauk SSSR, 126, 6 (1959) 1163-1165. Zbl0097.09701
  4. [4] A. P. CALDERON, Lebesgue spaces of differentiable functions and distributions, Proc. of Symposium in Pure Math. Vol. IV, Partial Differential Equations (1961), 33-49. Zbl0195.41103MR26 #603
  5. [5] A. P. CALDERON, Proc. Symposium Diff. Equations, Berkeley, Calif. 1960. 
  6. [6] R. COURANT and D. HILBERT, Methoden der Mathematischen Physik, 2 Band Springer Verlag, 1938. Zbl0156.23201
  7. [7] E. GAGLIARDO, Caratterizzazioni della tracce sulla frontiera relative ad alcune classi di funzioni in n variabili, Rendiconti Sem. Mat. Padova, Vol. 27 (1957), 248-305. Zbl0087.10902MR21 #1525
  8. [8] M. R. HESTENES, Extension of the range of a differentiable function, Duke Math. Journ. Vol. 8 (1941), 183-192. Zbl0024.38602MR2,219cJFM67.0191.03
  9. [9] L. LICHTENSTEIN, Eine elementare Bemerkung zur reellen Analysis, Math. Zeitschrift, Vol. 30 (1929), 794-795. Zbl55.0134.04JFM55.0134.04
  10. [10] S. M. NIKOLSKII, Theorems about restrictions, extensions and approximation of differentiable functions of several variables (Survey Article), Usp. Mat. Nauk. Vol. 16, 5 (1961), 63-114. 
  11. [11] R. T. SEELEY, Extension of C∞ functions defined in a half-space, Proc. Amer. Math. Soc. 15 (1964), 625-626. Zbl0127.28403MR29 #2676
  12. [12] L. I. SLOBODECKII, Spaces of S. L. Sobolev of fractional order, Dokl. Akad. Nauk. SSSR., Vol. 118 (1958), 243-246. Zbl0088.30302
  13. [13] M. H. TAIBLESON, Smoothness and differentiability conditions for functions and distributions in En, Dissertation. University of Chicago 1962. 

Citations in EuDML Documents

top
  1. Denise Chenais, Sur une famille de variétés à bord lipschitziennes. Application à un problème d'identification de domaines
  2. Nachman Aronszajn, R. D. Brown, R. S. Butcher, Construction of the solutions of boundary value problems for the biharmonic operator in a rectangle
  3. Robert Adams, Nachman Aronszajn, M. S. Hanna, Theory of Bessel potentials. III : potentials on regular manifolds
  4. A. El Kolli, n i è m e épaisseur dans les espaces de Sobolev avec poids
  5. Nachman Aronszajn, Pawel Szeptycki, Theory of Bessel potentials. IV. Potentials on subcartesian spaces with singularities of polyhedral type
  6. Alf Jonsson, Hans Wallin, A Whitney extension theorem in L p and Besov spaces

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.