Theory of Bessel potentials. III : potentials on regular manifolds
Robert Adams; Nachman Aronszajn; M. S. Hanna
Annales de l'institut Fourier (1969)
- Volume: 19, Issue: 2, page 279-338
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topAdams, Robert, Aronszajn, Nachman, and Hanna, M. S.. "Theory of Bessel potentials. III : potentials on regular manifolds." Annales de l'institut Fourier 19.2 (1969): 279-338. <http://eudml.org/doc/73991>.
@article{Adams1969,
abstract = {In this paper Bessel potentials on $C^\infty $-Riemannian manifolds (open or bordered) are studied. Let $\{\bf M\}$ be an $n$-dimensional manifold, and $\{\bf N\}$ a submanifold of $\{\bf M\}$ of dimension $k$. Sufficient conditions are given for: 1) the restriction to $\{\bf N\}$ of any potential of order $\alpha $ on $\{\bf M\}$ to be a potential of order $\alpha -\{n-k\over 2\}$ on $\{\bf N\}$ ; 2) any potential of order $\alpha -\{n-k\over 2\}$ on $\{\bf N\}$ to be extendable to a potential of order $\alpha $ on $\{\bf M\}$. It is also proved that for a bordered manifold $\{\bf M\}$ the restriction to its interior $\{\bf M\}^i$ is an isometric isomorphism between the spaces of potentials of order $\alpha $ on $\{\bf M\}$ and $\{\bf M\}^i$ respectively.},
author = {Adams, Robert, Aronszajn, Nachman, Hanna, M. S.},
journal = {Annales de l'institut Fourier},
keywords = {Bessel potentials on -Riemannian manifolds},
language = {eng},
number = {2},
pages = {279-338},
publisher = {Association des Annales de l'Institut Fourier},
title = {Theory of Bessel potentials. III : potentials on regular manifolds},
url = {http://eudml.org/doc/73991},
volume = {19},
year = {1969},
}
TY - JOUR
AU - Adams, Robert
AU - Aronszajn, Nachman
AU - Hanna, M. S.
TI - Theory of Bessel potentials. III : potentials on regular manifolds
JO - Annales de l'institut Fourier
PY - 1969
PB - Association des Annales de l'Institut Fourier
VL - 19
IS - 2
SP - 279
EP - 338
AB - In this paper Bessel potentials on $C^\infty $-Riemannian manifolds (open or bordered) are studied. Let ${\bf M}$ be an $n$-dimensional manifold, and ${\bf N}$ a submanifold of ${\bf M}$ of dimension $k$. Sufficient conditions are given for: 1) the restriction to ${\bf N}$ of any potential of order $\alpha $ on ${\bf M}$ to be a potential of order $\alpha -{n-k\over 2}$ on ${\bf N}$ ; 2) any potential of order $\alpha -{n-k\over 2}$ on ${\bf N}$ to be extendable to a potential of order $\alpha $ on ${\bf M}$. It is also proved that for a bordered manifold ${\bf M}$ the restriction to its interior ${\bf M}^i$ is an isometric isomorphism between the spaces of potentials of order $\alpha $ on ${\bf M}$ and ${\bf M}^i$ respectively.
LA - eng
KW - Bessel potentials on -Riemannian manifolds
UR - http://eudml.org/doc/73991
ER -
References
top- [1] R. ADAMS, N. ARONSZAJN and K. T. SMITH, Theory of Bessel Potentials, Part II, Ann. Inst. Fourier, Vol. 17, Fasc. 2 (1967), 1-135. Zbl0185.19703MR37 #4281
- [2] N. ARONSZAJN, Associated spaces, interpolation theorems and the regularity of solutions of differential problems, Proc. of Symposia in Pure Mathematics, Vol. IV, (1961), AMS. Zbl0196.40803
- [3] N. ARONSZAJN and E. GAGLIARDO, Interpolation spaces and interpolation methods, Ann. Mat. Pura Appl. Ser. IV, Vol. 68 (1965), 51-118. Zbl0195.13102
- [4] N. ARONSZAJN and K. T. SMITH, Theory of Bessel Potentials, Part I, Ann. Inst. Fourier, Vol. 11 (1961), 385-475. Zbl0102.32401MR26 #1485
- [5] A. P. CALDERÓN, Intermediate spaces and interpolation, Studia Math. (Ser. Specjalna) Zeszyt 1 (1963), 31-34. Zbl0124.31803
- [6] N. DUNFORD and J. T. SCHWARTZ, Linear Operators, Vol. I, Interscience, New York, (1958). Zbl0084.10402MR22 #8302
- [7] K. O. FRIEDRICHS, Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren, Math. Ann. Vol. 109 (1934), 465-487, 685-713. Errata : Ibid. Vol. 110 (1935), 777-779. Zbl0008.39203JFM60.1078.01
- [8] L. HÖRMANDER, Linear Partial Differential Operators, Academic Press, New York, (1963).
- [9] J. L. LIONS, Espaces intermédiaires entre espaces hilbertiens et applications, Bull. Math. Soc. Sci. Math. Phys. R.P. Roumaine, Bucharest 2 (50) (1958). Zbl0097.09501
- [10] J. L. LIONS, Une construction d'espaces d'interpolations, C.R. Acad. Sci. Paris, 251 (1960), 1853-1855. Zbl0118.10702
- [11] S. B. MYERS and N. E. STEENROD, The group of isometries of a Riemannian manifold, Ann. of Math. 40 (1939), 400-416. Zbl0021.06303JFM65.1415.03
- [12] R. S. PALAIS, On the differentiability of isometries, Proc. Amer. Math. Soc. 8 (1957), 805-807. Zbl0084.37405
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.