Theory of Bessel potentials. III : potentials on regular manifolds

Robert Adams; Nachman Aronszajn; M. S. Hanna

Annales de l'institut Fourier (1969)

  • Volume: 19, Issue: 2, page 279-338
  • ISSN: 0373-0956

Abstract

top
In this paper Bessel potentials on C -Riemannian manifolds (open or bordered) are studied. Let M be an n -dimensional manifold, and N a submanifold of M of dimension k . Sufficient conditions are given for: 1) the restriction to N of any potential of order α on M to be a potential of order α - n - k 2 on N  ; 2) any potential of order α - n - k 2 on N to be extendable to a potential of order α on M . It is also proved that for a bordered manifold M the restriction to its interior M i is an isometric isomorphism between the spaces of potentials of order α on M and M i respectively.

How to cite

top

Adams, Robert, Aronszajn, Nachman, and Hanna, M. S.. "Theory of Bessel potentials. III : potentials on regular manifolds." Annales de l'institut Fourier 19.2 (1969): 279-338. <http://eudml.org/doc/73991>.

@article{Adams1969,
abstract = {In this paper Bessel potentials on $C^\infty $-Riemannian manifolds (open or bordered) are studied. Let $\{\bf M\}$ be an $n$-dimensional manifold, and $\{\bf N\}$ a submanifold of $\{\bf M\}$ of dimension $k$. Sufficient conditions are given for: 1) the restriction to $\{\bf N\}$ of any potential of order $\alpha $ on $\{\bf M\}$ to be a potential of order $\alpha -\{n-k\over 2\}$ on $\{\bf N\}$ ; 2) any potential of order $\alpha -\{n-k\over 2\}$ on $\{\bf N\}$ to be extendable to a potential of order $\alpha $ on $\{\bf M\}$. It is also proved that for a bordered manifold $\{\bf M\}$ the restriction to its interior $\{\bf M\}^i$ is an isometric isomorphism between the spaces of potentials of order $\alpha $ on $\{\bf M\}$ and $\{\bf M\}^i$ respectively.},
author = {Adams, Robert, Aronszajn, Nachman, Hanna, M. S.},
journal = {Annales de l'institut Fourier},
keywords = {Bessel potentials on -Riemannian manifolds},
language = {eng},
number = {2},
pages = {279-338},
publisher = {Association des Annales de l'Institut Fourier},
title = {Theory of Bessel potentials. III : potentials on regular manifolds},
url = {http://eudml.org/doc/73991},
volume = {19},
year = {1969},
}

TY - JOUR
AU - Adams, Robert
AU - Aronszajn, Nachman
AU - Hanna, M. S.
TI - Theory of Bessel potentials. III : potentials on regular manifolds
JO - Annales de l'institut Fourier
PY - 1969
PB - Association des Annales de l'Institut Fourier
VL - 19
IS - 2
SP - 279
EP - 338
AB - In this paper Bessel potentials on $C^\infty $-Riemannian manifolds (open or bordered) are studied. Let ${\bf M}$ be an $n$-dimensional manifold, and ${\bf N}$ a submanifold of ${\bf M}$ of dimension $k$. Sufficient conditions are given for: 1) the restriction to ${\bf N}$ of any potential of order $\alpha $ on ${\bf M}$ to be a potential of order $\alpha -{n-k\over 2}$ on ${\bf N}$ ; 2) any potential of order $\alpha -{n-k\over 2}$ on ${\bf N}$ to be extendable to a potential of order $\alpha $ on ${\bf M}$. It is also proved that for a bordered manifold ${\bf M}$ the restriction to its interior ${\bf M}^i$ is an isometric isomorphism between the spaces of potentials of order $\alpha $ on ${\bf M}$ and ${\bf M}^i$ respectively.
LA - eng
KW - Bessel potentials on -Riemannian manifolds
UR - http://eudml.org/doc/73991
ER -

References

top
  1. [1] R. ADAMS, N. ARONSZAJN and K. T. SMITH, Theory of Bessel Potentials, Part II, Ann. Inst. Fourier, Vol. 17, Fasc. 2 (1967), 1-135. Zbl0185.19703MR37 #4281
  2. [2] N. ARONSZAJN, Associated spaces, interpolation theorems and the regularity of solutions of differential problems, Proc. of Symposia in Pure Mathematics, Vol. IV, (1961), AMS. Zbl0196.40803
  3. [3] N. ARONSZAJN and E. GAGLIARDO, Interpolation spaces and interpolation methods, Ann. Mat. Pura Appl. Ser. IV, Vol. 68 (1965), 51-118. Zbl0195.13102
  4. [4] N. ARONSZAJN and K. T. SMITH, Theory of Bessel Potentials, Part I, Ann. Inst. Fourier, Vol. 11 (1961), 385-475. Zbl0102.32401MR26 #1485
  5. [5] A. P. CALDERÓN, Intermediate spaces and interpolation, Studia Math. (Ser. Specjalna) Zeszyt 1 (1963), 31-34. Zbl0124.31803
  6. [6] N. DUNFORD and J. T. SCHWARTZ, Linear Operators, Vol. I, Interscience, New York, (1958). Zbl0084.10402MR22 #8302
  7. [7] K. O. FRIEDRICHS, Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren, Math. Ann. Vol. 109 (1934), 465-487, 685-713. Errata : Ibid. Vol. 110 (1935), 777-779. Zbl0008.39203JFM60.1078.01
  8. [8] L. HÖRMANDER, Linear Partial Differential Operators, Academic Press, New York, (1963). 
  9. [9] J. L. LIONS, Espaces intermédiaires entre espaces hilbertiens et applications, Bull. Math. Soc. Sci. Math. Phys. R.P. Roumaine, Bucharest 2 (50) (1958). Zbl0097.09501
  10. [10] J. L. LIONS, Une construction d'espaces d'interpolations, C.R. Acad. Sci. Paris, 251 (1960), 1853-1855. Zbl0118.10702
  11. [11] S. B. MYERS and N. E. STEENROD, The group of isometries of a Riemannian manifold, Ann. of Math. 40 (1939), 400-416. Zbl0021.06303JFM65.1415.03
  12. [12] R. S. PALAIS, On the differentiability of isometries, Proc. Amer. Math. Soc. 8 (1957), 805-807. Zbl0084.37405

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.