A maximal regular boundary for solutions of elliptic differential equations
Annales de l'institut Fourier (1968)
- Volume: 18, Issue: 1, page 283-308
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] M. BRELOT, Lectures on Potential Theory, Tata Inst. of Fundamental Research, Bombay, 1960. Zbl0098.06903MR22 #9749
- [2] C. CONSTANTINESCU and A. CORNEA, Ideale Ränder Riemannscher Flächen, Ergebnisse der Math. (2) 32 (1963). Zbl0112.30801
- [3] C. CONSTANTINESCU and A. CORNEA, Compactifications of harmonic spaces, Nagoya Math. J. 25 (1965), 1-57. Zbl0138.36701MR30 #4960
- [4] S. KAKUTANI, Concrete representation of abstract (M)-spaces, Ann. of Math. (2) 42 (1941), 994-1024. Zbl0060.26604
- [5] P.A. LOEB, An axiomatic treatment of pairs of elliptic differential equations, Ann. Inst. Fourier (Grenoble) 16,2 (1966), 167-208. Zbl0172.15101MR37 #3039
- [6] P.A. LOEB, A minimal compactification for extending continuous functions, Proc. Amer. Math. Soc. 18,2 (1967), 282-283. Zbl0146.44503MR35 #7301
- [7] P.A. LOEB and B. WALSH, The equivalence of Harnack's principle and Harnack's inequality in the axiomatic system of Brelot, Ann. Inst. Fourier (Grenoble) 15 (1965), 597-600. Zbl0132.33802MR32 #7773
- [8] L. LUMER-NAÏM, Harmonic product and harmonic boundary for bounded complex-valued harmonic functions, Abstract 623-18, Notices Amer. Math. Soc. 12 (1965), 355.
- [9] I.E. SEGAL, Decompositions of operator algebras, I, Memoirs Amer. Math. Soc. 9 (1951). Zbl0043.11505MR13,472a
- [10] J.C. TAYLOR, The Feller and Šilov boundaries of a vector lattice, Illinois J. Math. 10 (1966), 680-693. Zbl0143.15103MR34 #594
- [11] B. WALSH and P.A. LOEB, Nuclearity in axiomatic potential theory, Bull. Amer. Math. Soc. 72 (1966), 685-689. Zbl0144.15503MR35 #407