A maximal regular boundary for solutions of elliptic differential equations

Peter Loeb; Bertram Walsh

Annales de l'institut Fourier (1968)

  • Volume: 18, Issue: 1, page 283-308
  • ISSN: 0373-0956

How to cite

top

Loeb, Peter, and Walsh, Bertram. "A maximal regular boundary for solutions of elliptic differential equations." Annales de l'institut Fourier 18.1 (1968): 283-308. <http://eudml.org/doc/73947>.

@article{Loeb1968,
author = {Loeb, Peter, Walsh, Bertram},
journal = {Annales de l'institut Fourier},
keywords = {partial differential equations},
language = {eng},
number = {1},
pages = {283-308},
publisher = {Association des Annales de l'Institut Fourier},
title = {A maximal regular boundary for solutions of elliptic differential equations},
url = {http://eudml.org/doc/73947},
volume = {18},
year = {1968},
}

TY - JOUR
AU - Loeb, Peter
AU - Walsh, Bertram
TI - A maximal regular boundary for solutions of elliptic differential equations
JO - Annales de l'institut Fourier
PY - 1968
PB - Association des Annales de l'Institut Fourier
VL - 18
IS - 1
SP - 283
EP - 308
LA - eng
KW - partial differential equations
UR - http://eudml.org/doc/73947
ER -

References

top
  1. [1] M. BRELOT, Lectures on Potential Theory, Tata Inst. of Fundamental Research, Bombay, 1960. Zbl0098.06903MR22 #9749
  2. [2] C. CONSTANTINESCU and A. CORNEA, Ideale Ränder Riemannscher Flächen, Ergebnisse der Math. (2) 32 (1963). Zbl0112.30801
  3. [3] C. CONSTANTINESCU and A. CORNEA, Compactifications of harmonic spaces, Nagoya Math. J. 25 (1965), 1-57. Zbl0138.36701MR30 #4960
  4. [4] S. KAKUTANI, Concrete representation of abstract (M)-spaces, Ann. of Math. (2) 42 (1941), 994-1024. Zbl0060.26604
  5. [5] P.A. LOEB, An axiomatic treatment of pairs of elliptic differential equations, Ann. Inst. Fourier (Grenoble) 16,2 (1966), 167-208. Zbl0172.15101MR37 #3039
  6. [6] P.A. LOEB, A minimal compactification for extending continuous functions, Proc. Amer. Math. Soc. 18,2 (1967), 282-283. Zbl0146.44503MR35 #7301
  7. [7] P.A. LOEB and B. WALSH, The equivalence of Harnack's principle and Harnack's inequality in the axiomatic system of Brelot, Ann. Inst. Fourier (Grenoble) 15 (1965), 597-600. Zbl0132.33802MR32 #7773
  8. [8] L. LUMER-NAÏM, Harmonic product and harmonic boundary for bounded complex-valued harmonic functions, Abstract 623-18, Notices Amer. Math. Soc. 12 (1965), 355. 
  9. [9] I.E. SEGAL, Decompositions of operator algebras, I, Memoirs Amer. Math. Soc. 9 (1951). Zbl0043.11505MR13,472a
  10. [10] J.C. TAYLOR, The Feller and Šilov boundaries of a vector lattice, Illinois J. Math. 10 (1966), 680-693. Zbl0143.15103MR34 #594
  11. [11] B. WALSH and P.A. LOEB, Nuclearity in axiomatic potential theory, Bull. Amer. Math. Soc. 72 (1966), 685-689. Zbl0144.15503MR35 #407

NotesEmbed ?

top

You must be logged in to post comments.