The equivalence of Harnack's principle and Harnack's inequality in the axiomatic system of Brelot
Annales de l'institut Fourier (1965)
- Volume: 15, Issue: 2, page 597-600
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topLoeb, Peter, and Walsh, Bertram. "The equivalence of Harnack's principle and Harnack's inequality in the axiomatic system of Brelot." Annales de l'institut Fourier 15.2 (1965): 597-600. <http://eudml.org/doc/73886>.
@article{Loeb1965,
author = {Loeb, Peter, Walsh, Bertram},
journal = {Annales de l'institut Fourier},
keywords = {partial differential equations},
language = {eng},
number = {2},
pages = {597-600},
publisher = {Association des Annales de l'Institut Fourier},
title = {The equivalence of Harnack's principle and Harnack's inequality in the axiomatic system of Brelot},
url = {http://eudml.org/doc/73886},
volume = {15},
year = {1965},
}
TY - JOUR
AU - Loeb, Peter
AU - Walsh, Bertram
TI - The equivalence of Harnack's principle and Harnack's inequality in the axiomatic system of Brelot
JO - Annales de l'institut Fourier
PY - 1965
PB - Association des Annales de l'Institut Fourier
VL - 15
IS - 2
SP - 597
EP - 600
LA - eng
KW - partial differential equations
UR - http://eudml.org/doc/73886
ER -
References
top- [1] M. BRELOT, Axiomatique des Fonctions Harmoniques, Séminaire de Mathématiques Supérieures (Été 1965), University of Montreal.
- [2] M. BRELOT, Lectures on Potential Theory, Tata Institute of Fundamental Research, Bombay (1960). Zbl0098.06903MR22 #9749
- [3] C. CONSTANTINESCU and A. CORNEA, On the Axiomatic of Harmonic Functions I, Ann. Inst. Fourier, 13/2 (1963), 373-378. Zbl0122.34001MR29 #2416
- [4] N. DUNFORD and J. SCHWARTZ, Linear Operators, Part I, General Theory, Interscience Publishers, Inc., New York, (1958). Zbl0084.10402MR22 #8302
- [5] R.-M. HERVÉ, Recherches Axiomatiques sur la Théorie des Fonctions Surharmoniques et du Potentiel, Ann. Inst. Fourier, Grenoble, 12 (1962) 415-571. Zbl0101.08103MR25 #3186
Citations in EuDML Documents
top- Diederich Hinrichsen, Représentations intégrales et espaces fonctionnels nucléaires
- Peter Loeb, Bertram Walsh, A maximal regular boundary for solutions of elliptic differential equations
- Thomas E. Armstrong, Topological countability in Brelot potential theory
- Erika Battaglia, Stefano Biagi, Andrea Bonfiglioli, [unknown]
- Diederich Hinrichsen, Randintegrale und nukleare Funktionenraüme
- Linda Lumer-Naïm, -spaces of harmonic functions
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.