Masse auf lokalbeschränkten Raümen

Dieter Sondermann

Annales de l'institut Fourier (1969)

  • Volume: 19, Issue: 2, page 33-113
  • ISSN: 0373-0956

Abstract

top
The measure theory on a locally bounded space – i.e. a Hausdorff space with a “bounded” neighbourhood of each point – may be looked at from three different points of view. Firstly it is an extension of the measure theory of Bourbaki from locally compact spaces to more general topological spaces. Secondly from the point of view of the russian measure theorists Alexandroff, Prokhorov and Varadarajan it is an extension of their theory to measures which are not necessarily bounded. Finally the measure theory developed here may be regarded as the concrete version of the abstract theories of Stone and Loomis. This version is set up without leaving the original measure space by the introduction of ideal points – as is done by the well-known methods of compactification due to Kakutani and Bauer.The notion of integral developed in this article comprises – depending on the continuity properties of the measure considered – the Riemann integral as defined by Loomis, the first or the second Stone integral or – in case of a locally compact space – the Bourbaki integral. The different types of continuity of measures are characterized by making use of local compactification.The relations between the structure of a locally bounded space and the properties of his measures are studied in the last chapter. Different types of compactness are given a measure theoretic characterisation. Especially such a characterisation is given to the real compact spaces of Hewitt, since the results of some authors in this subject proved wrong. This result has some implications on the existence problem of measurable cardinals.

How to cite

top

Sondermann, Dieter. "Masse auf lokalbeschränkten Raümen." Annales de l'institut Fourier 19.2 (1969): 33-113. <http://eudml.org/doc/73993>.

@article{Sondermann1969,
author = {Sondermann, Dieter},
journal = {Annales de l'institut Fourier},
keywords = {differentiation and integration, measure theory},
language = {ger},
number = {2},
pages = {33-113},
publisher = {Association des Annales de l'Institut Fourier},
title = {Masse auf lokalbeschränkten Raümen},
url = {http://eudml.org/doc/73993},
volume = {19},
year = {1969},
}

TY - JOUR
AU - Sondermann, Dieter
TI - Masse auf lokalbeschränkten Raümen
JO - Annales de l'institut Fourier
PY - 1969
PB - Association des Annales de l'Institut Fourier
VL - 19
IS - 2
SP - 33
EP - 113
LA - ger
KW - differentiation and integration, measure theory
UR - http://eudml.org/doc/73993
ER -

References

top
  1. [1] A. D. ALEXANDROFF, Additive set functions in abstract spaces, Mat. Sbornik n.S. 8, 307-348 (1940) ; n.S. 9, 563-628 (1941). Zbl0023.39701MR2,315cJFM66.0218.01
  2. [2] H. BAUER, Caractérisation topologique de la partie complètement additive et de la partie purement additive d'une fonction additive d'ensemble. C.R. Acad. Sci. Paris 238, 1171-73 (1954). Zbl0056.05401MR15,783d
  3. [3] H. BAUER, Über die Beziehungen einer abstrakten Theorie des Riemann-Integrals zur Theorie Radonscher Maße. Math. Zeitschr. 65, 448-82 (1956). Zbl0073.04003MR18,645c
  4. [4] H. BAUER, Sur l'équivalence des théories de l'intégration selon N. Bourbaki et selon M. H. Stone. Bull. Soc. math. France, 85, 51-75 (1957). Zbl0077.10102MR19,1167h
  5. [5] H. BAUER, Wahrscheinlichkeitstheorie und Grundzüge der Maßtheorie Bd. I. Berlin 1964. Zbl0211.20102
  6. [6] N. BOURBAKI, Topologie Générale, Chap. I-X, Actual. Scient. et Ind., 1142, 1143, 1235, 1045, 1084, Paris (jeweils letzte Ausgabe). 
  7. [7] N. BOURBAKI, Intégration Chap. I-IV, Actual. Scient. et Ind. 1175, Paris, 1965. 
  8. [8] N. BOURBAKI, Espaces vectoriels topologiques Chap. I-V. Actual. Scient. et Ind., 1189, 1229 Paris, 1966/1964. 
  9. [9] G. CHOQUET, Cardinaux 2-mesurables et cônes faiblement complets, Ann. Inst. Fourier Grenoble 17, 1 383-93 (1968). Zbl0164.43004MR37 #4556
  10. [10] P. COURRÈGE, Théorie de la Mesure, Centre Docum. Univers., Paris, 1965. 
  11. [11] P. J. DANIELL, A general form of integral, Ann. of Math. (2) 29, 279-294 (1918). Zbl46.0395.01JFM46.0395.01
  12. [12] I. GELFAND, u. G. ŠILOV, Über verschiedene Methoden der Einführung der Topologie in die Menge der maximalen Ideale eines normierten Raumes, Rec. math. Moscou n.S. 9, 25-38 (1941). Zbl0024.32101MR3,52bJFM67.0407.01
  13. [13] L. GILLMAN and M. JERISON, Rings of continuous functions, Princeton, 1960. Zbl0093.30001MR22 #6994
  14. [14] I. GLICKSBERG, The representation of functionals by integrals, Duke Math. J. 19, 253-61 (1952). Zbl0048.09004MR14,288d
  15. [15] GO-DIN HU, Measures on σ-topological and topological spaces. Mat. Sbornik n.S. 60 (102), 257-69 (1963). 
  16. [16] G. G. GOULD, A Stone-Čech-Alexandroff-Type Compactification and its Application to Measure Theory. Proc. Lond. Math. Soc. (3) 14, 221-44 (1964). Zbl0119.32602
  17. [17] G. G. GOULD, u. M. MAHOWALD, Measures on completely regular spaces, Journ. of Lond. Math. Soc. 37, pp. 103 (1962). Zbl0133.07902MR27 #6122
  18. [18] P. R. HALMOS, Measure Theory, Princeton, 1950. Zbl0040.16802MR11,504d
  19. [19] O. HAUPT, u. Chr. PAUC, Bemerkungen über Inhalte und Maße in lokal bikompakten Räumen. Akad. Wiss. Lit. Mainz, Abh. math. nat. K1. 1955, 189-218 (1956). Zbl0065.28602
  20. [20] E. HEWITT, Rings of real-valued continuous functions, Trans. Amer. Math. Soc. 64, 54-99 (1948). Zbl0032.28603MR10,126e
  21. [21] K. JACOBS, Maß und Integral, Vorl. Ausarb., Erlangen (1966). 
  22. [22] J. D. KNOWLES, Measures on topological spaces, Proc. Lond. Math. Soc. (3) 17, 139-56 (1967). Zbl0154.05101MR34 #4441
  23. [23] D. KÖLZOW, Charakterisierung der Maße, welche zu einem Integral im Sinne von Stone oder von Bourbaki gehören, Arch. d. Math. 16, 200-7 (1965). Zbl0143.06902
  24. [24] D. KÖLZOW, Topologische Eigenschaften des abstrakten Integrals im Sinne von Bourbaki, Arch. d. Math. 17, 244-52 (1966). Zbl0143.07001MR35 #328
  25. [25] D. KÖLZOW, Charakterisierung der Maße, welche zu einem Integral im Sinne von Bourbaki gehören II, Normalität. Arch. d. Math. 18, 45-60 (1967). Zbl0143.07003
  26. [26] G. KÖTHE, Topologische Lineare Räume I, Berlin 1960. Zbl0093.11901
  27. [27] K. KRICKEBERG, Strong mixing properties of Markov chains with infinite invariant measure. Proc. Fifth Berkeley Symp. Math. Stat. Prob., Berkeley 1967. Zbl0211.48503MR36 #2223
  28. [28] L. LE CAM, Convergence in distribution of stochastic processes, Univ. Calif. Publ. Stat. 2, 11, 207-36 (1957). Zbl0077.12301MR19,128a
  29. [29] L. H. LOOMIS, Linear functionals and content. Amer. Journ. Math. 76, 168-82 (1954). Zbl0055.10101MR15,631d
  30. [30] E. MARCZEWSKI, On compact measures. Fund. Math. 40, 113-24 (1953). Zbl0052.04902MR15,610a
  31. [31] S. MAZUR, Une remarque sur l'homéomorphie des champs fonctionnels, Studia Math. 1, 83-85 (1929). Zbl55.0242.01JFM55.0242.01
  32. [32] J. NEVEU, Bases Mathématiques du Calcul des Probabilités. Paris 1964. Zbl0137.11203MR33 #6659
  33. [33] G. NÖBELING und H. BAUER, Allgemeine Approximations-kriterien mit Anwendungen, J. Ber. Deutsch. Math.-Verein. 58, 54-72 (1955). Zbl0066.31005
  34. [34] G. NÖBELING und H. BAUER, Über die Erweiterungen topologischer Räume, Math. Annalen 130, 20-45 (1955). Zbl0065.34602
  35. [35] J. PFANZAGL und W. PIERLO, Compact Systems of Sets, Lect. Notes in Math. 16, Berlin-Heidelberg-New York (1966). Zbl0161.36604MR35 #7360
  36. [36] K. A. ROSS and K. STROMBERG, Baire sets and Baire measures, Arkif för Matem. 6, Nr. 8, 151-60 (1965). Zbl0147.04501MR33 #4224
  37. [37] L. SCHWARTZ, Les Mesures de Radon dans les Espaces Topologiques Arbitraires, Vorl. Ausarb., Paris 1964. 
  38. [38] R. SOLOVAY, Real-valued measurable cardinals, lect. notes prep. in conn. with the Summer Inst. ax. set theory, UCLA (1967). Zbl0222.02078
  39. [39] M. H. STONE, Notes on Integration I-IV, Proc. Nat. Acad. Sci. USA, 34, 336-42, 447-55, 483-90 (1948) ; 35, 50-58 (1949). Zbl0031.01402MR10,24c
  40. [40] S. ULAM, Zur Masstheorie in der allgemeinen Mengenlehre, Fund. Math. 16, 140-50 (1930). JFM56.0920.04
  41. [41] V. S. VARADARAJAN, Measures on topological spaces (russ.), Mat. Sbornik n.S. 55 (97), 33-100 (1961) ; Übers. (engl.) : Transl. Amer. Math. Soc. (2) 78, 161-228 (1965). Zbl0152.04202MR26 #6342
  42. [42] W. H. YOUNG, A new method in the theory of integration, Proc. Lond. Math. Soc. (2) 9, 15-50 (1911). JFM41.0325.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.