Duality and the Martin compactification

John C. Taylor

Annales de l'institut Fourier (1972)

  • Volume: 22, Issue: 3, page 95-130
  • ISSN: 0373-0956

Abstract

top
Let be a Bauer sheaf that admits a Green function. Then there exists a diffusion process corresponding to the sheaf whose resolvent possesses a Hunt-Kunita-Watanabe dual resolvent that comes from a diffusion process. If is a Brelot sheaf which possesses an adjoint sheaf * the dual process corresponds to * .The Martin compactification defined by a Brelot sheaf that admits a Green function coincides with a Kunita-Watanabe compactification defined by the dual resolvent.

How to cite

top

Taylor, John C.. "Duality and the Martin compactification." Annales de l'institut Fourier 22.3 (1972): 95-130. <http://eudml.org/doc/74095>.

@article{Taylor1972,
abstract = {Let $\{\cal H\}$ be a Bauer sheaf that admits a Green function. Then there exists a diffusion process corresponding to the sheaf whose resolvent possesses a Hunt-Kunita-Watanabe dual resolvent that comes from a diffusion process. If $\{\cal H\}$ is a Brelot sheaf which possesses an adjoint sheaf $\{\cal H\}^*$ the dual process corresponds to $\{\cal H\}^*$.The Martin compactification defined by a Brelot sheaf $\{\cal H\}$ that admits a Green function coincides with a Kunita-Watanabe compactification defined by the dual resolvent.},
author = {Taylor, John C.},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {3},
pages = {95-130},
publisher = {Association des Annales de l'Institut Fourier},
title = {Duality and the Martin compactification},
url = {http://eudml.org/doc/74095},
volume = {22},
year = {1972},
}

TY - JOUR
AU - Taylor, John C.
TI - Duality and the Martin compactification
JO - Annales de l'institut Fourier
PY - 1972
PB - Association des Annales de l'Institut Fourier
VL - 22
IS - 3
SP - 95
EP - 130
AB - Let ${\cal H}$ be a Bauer sheaf that admits a Green function. Then there exists a diffusion process corresponding to the sheaf whose resolvent possesses a Hunt-Kunita-Watanabe dual resolvent that comes from a diffusion process. If ${\cal H}$ is a Brelot sheaf which possesses an adjoint sheaf ${\cal H}^*$ the dual process corresponds to ${\cal H}^*$.The Martin compactification defined by a Brelot sheaf ${\cal H}$ that admits a Green function coincides with a Kunita-Watanabe compactification defined by the dual resolvent.
LA - eng
UR - http://eudml.org/doc/74095
ER -

References

top
  1. [1] H. BAUER, Harmonische Raüme und ihre Potentialtheorie, Lectures 22, Springer-Verlag, Berlin 1966. Zbl0142.38402
  2. [2] R. CAIROLI, Produits de semi-groupes de transition et produits de processus, Publ. Inst. Stat. Univ. Paris 15 (1966). Zbl0161.14603MR35 #7397
  3. [3] G. CHOQUET, Le problème des moments, Séminaire de l'Initiation à l'Analyse (Choquet) Institut Henri Poincaré 1ère année 1962. 
  4. [4] C. CONSTANTINESCU, A topology on the cone of non-negative superharmonic functions, Rev. Roum. Math. Pures et Appl. X (1965), 1331-1348. Zbl0144.36603MR35 #1804
  5. [5] C. CONSTANTINESCU, Kernels and nuclei on harmonic spaces, Rev. Roum. Math. Pures et Appl. XIII (1968), 35-37. Zbl0159.40901MR38 #332
  6. [6] W. HANSEN, Konstruktion von Halbgruppen und Markoffschen Prozessen, Inventiones Math. 3 (1967), 179-214. Zbl0158.12803MR38 #771
  7. [7] R.M. HERVE, Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Ann. Inst. Fourier 12 (1962), 415-571. Zbl0101.08103MR25 #3186
  8. [8] H. KUNITA, and T. WATANABE, Markov processes and Martin Boundaries, Part I, Illinois J. Math. 9 (1965), 485-526. Zbl0147.16505MR31 #5240
  9. [9] P.A. MEYER, Probabilités et potentiel, Hermann et Cie, Paris 1966. Zbl0138.10402MR34 #5118
  10. [10] P.A. MEYER, Processus de Markov, Lecture Notes 26, Springer-Verlag, Berlin 1967. Zbl0189.51403MR36 #2219
  11. [11] P.A. MEYER, Représentation intégrale des fonctions excessives, résultats de Mokobodzki, Séminaire de Probabilités V (Université de Strasbourg), Springer-Verlag, Berlin 1971. 
  12. [12] M. SIEVEKING, Integral darstellung superharmonischer Funktionen mit anwendung auf parabolische differentialgleichungen, Seminar uber potential theorie, Springer-Verlag, Berlin 1968. 
  13. [13] M. SIEVEKING, On the existence of a dual in axiomatic potential theory (unpublished manuscript). 
  14. [14] J.C. TAYLOR, The Martin boundaries of equivalent sheaves, Ann. Inst. Fourier XX (1970), 433-456. Zbl0185.19801MR42 #2022
  15. [15] J.C. TAYLOR, Balayage de fonctions excessives, Séminaire de Théorie du Potentiel (Brelot, Choquet, Deny). Institut Henri Poincaré 14ème année (1970-1971). Zbl0317.31010
  16. [16] J.C. TAYLOR, Strict potentials and Hunt processes, Inventiones math. 16 (1972), 249-559. Zbl0225.31013MR45 #9389

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.