Dirichlet forms on symmetric spaces

Christian Berg

Annales de l'institut Fourier (1973)

  • Volume: 23, Issue: 1, page 135-156
  • ISSN: 0373-0956

Abstract

top
Let G be a locally compact group and K a compact subgroup such that the algebra L 1 ( G ) of biinvariant integrable functions is commutative. We characterize the G -invariant Dirichlet forms on the homogeneous space G / K using harmonic analysis of L 1 ( G ) . This extends results from Ch. Berg, Séminaire Brelot-Choquet-Deny, Paris, 13e année 1969/70 and J. Deny, Potential theory (C.I.M.E., I ciclo, Stresa), Ed. Cremonese, Rome, 1970. Every non-zero G -invariant Dirichlet form on a symmetric space G / K of non compact type of rank one give rise to a regular Dirichlet space, and these potentials of finite energy are square integrable in contrast to euclidean space.

How to cite

top

Berg, Christian. "Dirichlet forms on symmetric spaces." Annales de l'institut Fourier 23.1 (1973): 135-156. <http://eudml.org/doc/74107>.

@article{Berg1973,
abstract = {Let $G$ be a locally compact group and $K$ a compact subgroup such that the algebra $L^1(G)^\sharp $ of biinvariant integrable functions is commutative. We characterize the $G$-invariant Dirichlet forms on the homogeneous space $G/K$ using harmonic analysis of $L^1(G)^\sharp $. This extends results from Ch. Berg, Séminaire Brelot-Choquet-Deny, Paris, 13e année 1969/70 and J. Deny, Potential theory (C.I.M.E., I ciclo, Stresa), Ed. Cremonese, Rome, 1970. Every non-zero $G$-invariant Dirichlet form on a symmetric space $G/K$ of non compact type of rank one give rise to a regular Dirichlet space, and these potentials of finite energy are square integrable in contrast to euclidean space.},
author = {Berg, Christian},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {1},
pages = {135-156},
publisher = {Association des Annales de l'Institut Fourier},
title = {Dirichlet forms on symmetric spaces},
url = {http://eudml.org/doc/74107},
volume = {23},
year = {1973},
}

TY - JOUR
AU - Berg, Christian
TI - Dirichlet forms on symmetric spaces
JO - Annales de l'institut Fourier
PY - 1973
PB - Association des Annales de l'Institut Fourier
VL - 23
IS - 1
SP - 135
EP - 156
AB - Let $G$ be a locally compact group and $K$ a compact subgroup such that the algebra $L^1(G)^\sharp $ of biinvariant integrable functions is commutative. We characterize the $G$-invariant Dirichlet forms on the homogeneous space $G/K$ using harmonic analysis of $L^1(G)^\sharp $. This extends results from Ch. Berg, Séminaire Brelot-Choquet-Deny, Paris, 13e année 1969/70 and J. Deny, Potential theory (C.I.M.E., I ciclo, Stresa), Ed. Cremonese, Rome, 1970. Every non-zero $G$-invariant Dirichlet form on a symmetric space $G/K$ of non compact type of rank one give rise to a regular Dirichlet space, and these potentials of finite energy are square integrable in contrast to euclidean space.
LA - eng
UR - http://eudml.org/doc/74107
ER -

References

top
  1. [1] Chr. BERG, Suites définies négatives et espaces de Dirichlet sur la sphère, Séminaire Brelot-Choquet-Deny, Paris, 13e année 1969/1970. Zbl0213.13202
  2. [2] Chr. BERG, Semi-groupes de Feller et le théorème de Hunt, Preprint Series no, 12, Matematisk Institut, University of Copenhagen, 1971. 
  3. [3] J. DENY, Méthodes hilbertiennes en théorie du potentiel, Potential theory (C.I.M.E., I ciclo, Stresa), Ed. Cremonese, Rome, 1970. Zbl0212.13401MR44 #1833
  4. [4] J. DIXMIER, Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 1964. Zbl0152.32902MR30 #1404
  5. [5] M. FLENSTED-JENSEN, Paley-Wiener type theorems for a differential operator connected with symmetric spaces, Arkiv för Matematik. Vol. 10 (1972) n° 1. Zbl0233.42012MR47 #7520
  6. [6] R. GANGOLLI, Isotropic infinitely divisible measures on symmetric spaces, Acta Math. 111 (1964), 213-246. Zbl0154.43804MR28 #4557
  7. [7] I. GLICKSBERG, Uniform boundedness for groups, Canad. J. Math. 14 (1962), 269-276. Zbl0109.02001MR27 #5856
  8. [8] R. GODEMENT, Sur la théorie des représentations unitaires, Ann. Math. 53 (1951), 68-124. Zbl0042.34606MR12,421d
  9. [9] R. GODEMENT, Introduction aux travaux de A. Selberg, Séminaire Bourbaki, Paris 1957, exposé 144. Zbl0202.40902
  10. [10] HARISH-CHANDRA, Spherical functions on a semi-simple Lie group II, Amer. J. Math. 80 (1958), 553-613. Zbl0093.12801MR21 #92
  11. [11] S. HELGASON, Differential Geometry and Symmetric spaces (Pure and Applied Mathematics 12), Academic Press, New York, London, 1962. Zbl0111.18101
  12. [12] B. KOSTANT, On the existence and irreducibility of certain series of representations, Bull. Amer. Math. Soc. 75 (1969), 627-642. Zbl0229.22026MR39 #7031
  13. [13] K. SATO, T. UENO, Multidimensional diffusion and the Markov process on the boundary, J. Math. Kyoto Univ. 4 (1965), 529-605. Zbl0219.60057MR33 #6702

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.