Dirichlet forms on symmetric spaces
Annales de l'institut Fourier (1973)
- Volume: 23, Issue: 1, page 135-156
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBerg, Christian. "Dirichlet forms on symmetric spaces." Annales de l'institut Fourier 23.1 (1973): 135-156. <http://eudml.org/doc/74107>.
@article{Berg1973,
abstract = {Let $G$ be a locally compact group and $K$ a compact subgroup such that the algebra $L^1(G)^\sharp $ of biinvariant integrable functions is commutative. We characterize the $G$-invariant Dirichlet forms on the homogeneous space $G/K$ using harmonic analysis of $L^1(G)^\sharp $. This extends results from Ch. Berg, Séminaire Brelot-Choquet-Deny, Paris, 13e année 1969/70 and J. Deny, Potential theory (C.I.M.E., I ciclo, Stresa), Ed. Cremonese, Rome, 1970. Every non-zero $G$-invariant Dirichlet form on a symmetric space $G/K$ of non compact type of rank one give rise to a regular Dirichlet space, and these potentials of finite energy are square integrable in contrast to euclidean space.},
author = {Berg, Christian},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {1},
pages = {135-156},
publisher = {Association des Annales de l'Institut Fourier},
title = {Dirichlet forms on symmetric spaces},
url = {http://eudml.org/doc/74107},
volume = {23},
year = {1973},
}
TY - JOUR
AU - Berg, Christian
TI - Dirichlet forms on symmetric spaces
JO - Annales de l'institut Fourier
PY - 1973
PB - Association des Annales de l'Institut Fourier
VL - 23
IS - 1
SP - 135
EP - 156
AB - Let $G$ be a locally compact group and $K$ a compact subgroup such that the algebra $L^1(G)^\sharp $ of biinvariant integrable functions is commutative. We characterize the $G$-invariant Dirichlet forms on the homogeneous space $G/K$ using harmonic analysis of $L^1(G)^\sharp $. This extends results from Ch. Berg, Séminaire Brelot-Choquet-Deny, Paris, 13e année 1969/70 and J. Deny, Potential theory (C.I.M.E., I ciclo, Stresa), Ed. Cremonese, Rome, 1970. Every non-zero $G$-invariant Dirichlet form on a symmetric space $G/K$ of non compact type of rank one give rise to a regular Dirichlet space, and these potentials of finite energy are square integrable in contrast to euclidean space.
LA - eng
UR - http://eudml.org/doc/74107
ER -
References
top- [1] Chr. BERG, Suites définies négatives et espaces de Dirichlet sur la sphère, Séminaire Brelot-Choquet-Deny, Paris, 13e année 1969/1970. Zbl0213.13202
- [2] Chr. BERG, Semi-groupes de Feller et le théorème de Hunt, Preprint Series no, 12, Matematisk Institut, University of Copenhagen, 1971.
- [3] J. DENY, Méthodes hilbertiennes en théorie du potentiel, Potential theory (C.I.M.E., I ciclo, Stresa), Ed. Cremonese, Rome, 1970. Zbl0212.13401MR44 #1833
- [4] J. DIXMIER, Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 1964. Zbl0152.32902MR30 #1404
- [5] M. FLENSTED-JENSEN, Paley-Wiener type theorems for a differential operator connected with symmetric spaces, Arkiv för Matematik. Vol. 10 (1972) n° 1. Zbl0233.42012MR47 #7520
- [6] R. GANGOLLI, Isotropic infinitely divisible measures on symmetric spaces, Acta Math. 111 (1964), 213-246. Zbl0154.43804MR28 #4557
- [7] I. GLICKSBERG, Uniform boundedness for groups, Canad. J. Math. 14 (1962), 269-276. Zbl0109.02001MR27 #5856
- [8] R. GODEMENT, Sur la théorie des représentations unitaires, Ann. Math. 53 (1951), 68-124. Zbl0042.34606MR12,421d
- [9] R. GODEMENT, Introduction aux travaux de A. Selberg, Séminaire Bourbaki, Paris 1957, exposé 144. Zbl0202.40902
- [10] HARISH-CHANDRA, Spherical functions on a semi-simple Lie group II, Amer. J. Math. 80 (1958), 553-613. Zbl0093.12801MR21 #92
- [11] S. HELGASON, Differential Geometry and Symmetric spaces (Pure and Applied Mathematics 12), Academic Press, New York, London, 1962. Zbl0111.18101
- [12] B. KOSTANT, On the existence and irreducibility of certain series of representations, Bull. Amer. Math. Soc. 75 (1969), 627-642. Zbl0229.22026MR39 #7031
- [13] K. SATO, T. UENO, Multidimensional diffusion and the Markov process on the boundary, J. Math. Kyoto Univ. 4 (1965), 529-605. Zbl0219.60057MR33 #6702
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.