Bochner and Schoenberg theorems on symmetric spaces in the complex case

Piotr Graczyk; Jean-Jacques Lœb

Bulletin de la Société Mathématique de France (1994)

  • Volume: 122, Issue: 4, page 571-590
  • ISSN: 0037-9484

How to cite

top

Graczyk, Piotr, and Lœb, Jean-Jacques. "Bochner and Schoenberg theorems on symmetric spaces in the complex case." Bulletin de la Société Mathématique de France 122.4 (1994): 571-590. <http://eudml.org/doc/87705>.

@article{Graczyk1994,
author = {Graczyk, Piotr, Lœb, Jean-Jacques},
journal = {Bulletin de la Société Mathématique de France},
keywords = {spherical Fourier transform; positive definite functions; Bochner theorem; Schoenberg theorem; Levy-Khinchine formulae},
language = {eng},
number = {4},
pages = {571-590},
publisher = {Société mathématique de France},
title = {Bochner and Schoenberg theorems on symmetric spaces in the complex case},
url = {http://eudml.org/doc/87705},
volume = {122},
year = {1994},
}

TY - JOUR
AU - Graczyk, Piotr
AU - Lœb, Jean-Jacques
TI - Bochner and Schoenberg theorems on symmetric spaces in the complex case
JO - Bulletin de la Société Mathématique de France
PY - 1994
PB - Société mathématique de France
VL - 122
IS - 4
SP - 571
EP - 590
LA - eng
KW - spherical Fourier transform; positive definite functions; Bochner theorem; Schoenberg theorem; Levy-Khinchine formulae
UR - http://eudml.org/doc/87705
ER -

References

top
  1. [1] BERG (C.). — Dirichlet forms on symmetric spaces, Ann. Inst. Fourier, t. 23, 1973, p. 135-156. Zbl0243.31013MR52 #14340
  2. [2] DENY (J.). — Notions sur les semigroupes d'opérateurs linéaires, cours rédigé par J. Faraut, Faculté des Sciences d'Orsay, Département de Mathématiques, 1963. 
  3. [3] FELLER (W.). — An Introduction to Probability Theory, vol. 2. — Wiley, New York, 1966. Zbl0138.10207
  4. [4] FLENSTED-JENSEN (M.). — Spherical functions on a real semisimple Lie group. A method of reduction to the complex case, J. Funct. Anal., t. 30, 1978, p. 106-146. Zbl0419.22019MR80f:43022
  5. [5] GANGOLLI (R.). — Isotropic infinitely divisible measures on symmetric spaces, Acta Math., t. 111, 1964, p. 213-246. Zbl0154.43804MR28 #4557
  6. [6] GETOOR (R.K.). — Infinitely divisible probabilities on the hyperbolic plane, Pacific J. Math., t. 11, 1961, p. 1287-1308. Zbl0124.34502MR24 #A3682
  7. [7] GRACZYK (P.). — A central limit theorem on the space of positive definite symmetric matrices, Ann. Inst. Fourier, t. 42, 1992, p. 857-874. Zbl0736.60025MR93m:60023
  8. [8] GRACZYK (P.). — Dispersions and a central limit theorem on symmetric spaces, to appear in Bull. Sci. Math. Zbl0829.43002
  9. [9] GRACZYK (P.). — Cramér theorem on symmetric spaces of noncompact type, to appear in J. Theor. Prob. Zbl0808.60013
  10. [10] HELGASON (S.). — Analysis on Lie Groups and Homogeneous Spaces, Regional Conference Series in Mathematics, 14, AMS, Providence R.I., 1972. Zbl0264.22010MR47 #5179
  11. [11] HELGASON (S.). — Groups and Geometric Analysis. — Academic Press, New York, 1984. Zbl0543.58001MR86c:22017
  12. [12] LUKACS (E.). — Characteristic Functions. — Griffin, London, 1960. Zbl0087.33605MR23 #A1392
  13. [13] RICHARDS (D.St.P.). — The central limit theorem on spaces of positive definite matrices, J. Multivariate Anal., t. 29, 1989, p. 326-332. Zbl0681.60026MR91a:60031
  14. [14] TERRAS (A.). — Harmonic Analysis on Symmetric Spaces and Applications II. — Springer Verlag, New York, 1988. Zbl0668.10033MR89k:22017

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.