# On the homotopy type of $\mathrm{Diff}\left({M}^{n}\right)$ and connected problems

Annales de l'institut Fourier (1973)

- Volume: 23, Issue: 2, page 3-17
- ISSN: 0373-0956

## Access Full Article

top## Abstract

top## How to cite

topBurghelea, Dan. "On the homotopy type of ${\rm Diff}(M^n)$ and connected problems." Annales de l'institut Fourier 23.2 (1973): 3-17. <http://eudml.org/doc/74129>.

@article{Burghelea1973,

abstract = {This paper reports on some results concerning:a) The homotopy type of the group of diffeomorphisms $\{\rm Diff\}\,(M^n)$ of a differentiable compact manifold $M^n$ (with $C^\infty $-topology).b) the result of the homotopy comparison of this space with the group of all homeomorphisms Homeo $M^n$ (with $C^o$-topology). As a biproduct, one gets new facts about the homotopy groups of $\{\rm Diff\}\, (D^n,\partial D^n),\{\rm Top\}_n$, $\{\rm Top\}_n/O_n$ and about the number of connected components of the space of topological and combinatorial pseudoisotopies.The results are contained in Section 1 and Section 2 and the geometric ideas in Section 3.},

author = {Burghelea, Dan},

journal = {Annales de l'institut Fourier},

language = {eng},

number = {2},

pages = {3-17},

publisher = {Association des Annales de l'Institut Fourier},

title = {On the homotopy type of $\{\rm Diff\}(M^n)$ and connected problems},

url = {http://eudml.org/doc/74129},

volume = {23},

year = {1973},

}

TY - JOUR

AU - Burghelea, Dan

TI - On the homotopy type of ${\rm Diff}(M^n)$ and connected problems

JO - Annales de l'institut Fourier

PY - 1973

PB - Association des Annales de l'Institut Fourier

VL - 23

IS - 2

SP - 3

EP - 17

AB - This paper reports on some results concerning:a) The homotopy type of the group of diffeomorphisms ${\rm Diff}\,(M^n)$ of a differentiable compact manifold $M^n$ (with $C^\infty $-topology).b) the result of the homotopy comparison of this space with the group of all homeomorphisms Homeo $M^n$ (with $C^o$-topology). As a biproduct, one gets new facts about the homotopy groups of ${\rm Diff}\, (D^n,\partial D^n),{\rm Top}_n$, ${\rm Top}_n/O_n$ and about the number of connected components of the space of topological and combinatorial pseudoisotopies.The results are contained in Section 1 and Section 2 and the geometric ideas in Section 3.

LA - eng

UR - http://eudml.org/doc/74129

ER -

## References

top- [1] P. ANTONELLI, D. BURGHELEA, P. J. KAHN, The non finite homotopy type of some Diff... Topology V. 11, 1-49 (1972). Zbl0225.57013
- [2] P. ANTONELLI, D. BURGHELEA, P. J. KAHN, The concordance homotopy groups. Lectures Notes in Math., Springer Verlag, Vol. 215. Zbl0222.57001
- [3] D. BURGHELEA et N. KUIPER, Hilbert manifolds. Ann. of Math. V. 90 (1969), 379-417. Zbl0195.53501MR40 #6589
- [4] J. CERF, La stratification naturelle des espaces des fonctions différentiables réelles et le théorème de pseudoïsotopie. Publications Math. I.H.E.S., Vol. 39. Zbl0213.25202
- [5] J. CERF, Invariants des paires d'espaces, Applications à la topologie différentielle, C.I.M.E. (1961) (Urbino). Zbl0195.25202
- [6] A. HAEFLIGER et C.T.C. WALL, Piecewise linear bundles in the stable range, Topology Vol. 4 (1965) p. 209. Zbl0151.32602MR32 #1716
- [7] A. HATCHER, This Issue.
- [8] D. HENDERSON, Infinite dimensional manifolds are open sets of Hilbert space. Topology V. 9 (1970) 25-33. Zbl0167.51904MR40 #3581
- [9] R. LASHOF, The immersion approach to triangulation and smoothing. Proceedings of symposia in pure mathematics. Vol. XXII, 131-164. Zbl0236.57010MR47 #5879
- [10] C. MORLET, Isotopie et pseudoïsotopie. C.R. Acad. Sc., A t. 266 (1968) 559-560 and «Cours Pecot», Collège de France (1969). Zbl0174.54602MR38 #5228
- [11] C. ROURKE et B. SANDERSON, Δ-sets (to appear).
- [12] H. TODA, p-primary components of homotopy groups IV. Memoirs of College of Science Univ. Kyoto V. XXXVII p. 297-332. Zbl0095.16802

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.