Subduals and tensor products of spaces of harmonic functions
Annales de l'institut Fourier (1974)
- Volume: 24, Issue: 3, page 119-144
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReay, Ian. "Subduals and tensor products of spaces of harmonic functions." Annales de l'institut Fourier 24.3 (1974): 119-144. <http://eudml.org/doc/74179>.
@article{Reay1974,
abstract = {Working in the axiomatic potential theory of M. Brelot, a description of the subdual of the vector space generated by the cone of positive harmonic functions on a harmonic space, $\Omega $, is given. Under certain hypothesis this is seen to be a function space on the Martin boundary of $\Omega $. Some ancillary results are proved. Next, it is shown, using this result and the theory of tensor products of simplexes, that the cone of positive separately harmonic functions is the tensor product of the cones of positive harmonic functions on the factor spaces. With this theorem as a starting point it is demonstrated that by using tensor product techniques whenever possible many proofs of results in the theory of separately harmonic functions can be simplified and new results obtained.},
author = {Reay, Ian},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {3},
pages = {119-144},
publisher = {Association des Annales de l'Institut Fourier},
title = {Subduals and tensor products of spaces of harmonic functions},
url = {http://eudml.org/doc/74179},
volume = {24},
year = {1974},
}
TY - JOUR
AU - Reay, Ian
TI - Subduals and tensor products of spaces of harmonic functions
JO - Annales de l'institut Fourier
PY - 1974
PB - Association des Annales de l'Institut Fourier
VL - 24
IS - 3
SP - 119
EP - 144
AB - Working in the axiomatic potential theory of M. Brelot, a description of the subdual of the vector space generated by the cone of positive harmonic functions on a harmonic space, $\Omega $, is given. Under certain hypothesis this is seen to be a function space on the Martin boundary of $\Omega $. Some ancillary results are proved. Next, it is shown, using this result and the theory of tensor products of simplexes, that the cone of positive separately harmonic functions is the tensor product of the cones of positive harmonic functions on the factor spaces. With this theorem as a starting point it is demonstrated that by using tensor product techniques whenever possible many proofs of results in the theory of separately harmonic functions can be simplified and new results obtained.
LA - eng
UR - http://eudml.org/doc/74179
ER -
References
top- [1] E.M. ALFSEN, Boundary Integrals and Compact Convex Sets, Ergebnisse der Math., Springer-Verlag, 1971. Zbl0209.42601
- [2] N. BOBOC and A. CORNEA, Convex Cones of Lower Semi-Continuous Functions, Rev. Roum. Maths. Pures et Appl., 13 (1967), 471-525. Zbl0155.17301MR35 #7113
- [3] N. BOURBAKI, Espaces Vectoriels Topologiques, Chapitre III, Actualités Scientifiques et Industrielles, Hermann. Zbl0050.10703
- [4] N. BOURBAKI, Topologie Générale, Chapitre X, 2ème Edition, Actualités Scientifiques et Industrielles, Hermann.
- [5] M. BRELOT, Sur l'Approximation et la Convergence dans la Théorie des Fonctions Harmoniques et Holomorphes, Bull. Soc. Math. de France, 73 (1945), 55-70. Zbl0061.22804MR7,205a
- [6] M. BRELOT, Sur un Théorème de Prolongement Fonctionnel de Keldych concernant le Problème de Dirichlet, Journal d'Analyse Math. VIII, (1960-1961), 273-288. Zbl0111.09604MR23 #A2549
- [7] M. BRELOT, Axiomatique des Fonctions Harmoniques, Les Presses de l'Université de Montréal, 1966. Zbl0148.10401
- [8] G. CHOQUET, Lectures on Analysis, Vol. II, Benjamin, 1969. Zbl0181.39602
- [9] R. CAIROLI, Une Représentation Integrale pour Fonctions Séparément Excessives, Ann. Inst. Fourier, Grenoble, 18,1 (1968), 317-338. Zbl0165.52601MR41 #4650
- [10] CONSTANTINESCU and CORNEA, Ideale Ränder Riemanscher Flächen, Ergebnisse der Math., 32, Springer-Verlag, 1963. Zbl0112.30801MR28 #3151
- [11] E.B. DAVIES and G.F. VINCENT-SMITH, Tensor Products, Infinite Products and Projective Limits of Choquet Simplexes, Math. Scand., 22 (1968), 145-164. Zbl0176.42802
- [12] D.A. EDWARDS, Séparation de Fonctions Réelles Définies sur un Simplexe de Choquet, Comptes Rendus A.S., Paris, 261 (1965), 2798-2800. Zbl0156.13301MR32 #8131
- [13] D.A. EDWARDS and G.F. VINCENT-SMITH, A Weierstrass-Stone Theorem for Choquet Simplexes, Ann. Inst. Fourier Grenoble, 18 (1968), 261-282. Zbl0172.15604MR39 #6060
- [14] E.G. EFFROS and J.L. KAZDAN, Applications of Choquet Simplexes to Elliptic and Parabolic Boundary Value Problems, Journal of Differential Equations, 8, (1970), 95-134. Zbl0255.46018MR41 #4215
- [15] K. GOWRISANKARAN, Extreme Harmonic Functions and Boundary Value Problems, Ann. Inst. Fourier, Grenoble, 13,2 (1963), 307-356. Zbl0134.09503MR29 #1350
- [16] K. GOWRISANKARAN, Multiply Harmonic Functions, Nagoya Math. Journal, 28 (1966), 27-48. Zbl0148.10501MR35 #410
- [17] L.L. HELMS, Introduction to Potential Theory, Wiley-Interscience, 1969. Zbl0188.17203MR41 #5638
- [18] R.M. HERVE, Recherches Axiomatiques sur la Théorie des Fonctions Surharmoniques et du Potentiel, Ann. Inst. Fourier, Grenoble, 12 (1962), 415-571. Zbl0101.08103MR25 #3186
- [19] A. LAZAR, Affine Products of Simplexes, Math. Scand., 22 (1968), 165-175. Zbl0176.42803MR40 #4727
- [20] R.S. MARTIN, Minimal Harmonic Functions, Trans. Amer. Math. Soc., 1941. Zbl0025.33302MR2,292hJFM67.0343.03
- [21] I. NAMIOKA and R.R. PHELPS, Tensor Products of Compact Convex Sets, Pac. Journal of Math., 31, no.2, (1969), 469-480. Zbl0184.34302MR42 #6572
- [22] R.R. PHELPS, Lectures on Choquet's Theorem, Van Nostrand Mathematical Studies, Princeton, N.J., 1969. Zbl0172.15603
- [23] A. DE LA PRADELLE, Approximation et Charactère de Quasi-Analyticité dans la Théorie Axiomatique des Fonctions Harmoniques, Ann. Inst. Fourier, Grenoble, 17 (1967), 383-399. Zbl0153.15501MR37 #3040
- [24] G.F. VINCENT-SMITH, Uniform Approximation of Harmonic Functions, Ann. Inst. Fourier, Grenoble, 19,2 (1969), 339-353. Zbl0176.09904MR43 #2236
- [25] B. WALSH and P.A. LOEB, Nuclearity in Axiomatic Potential Theory, Bull. Amer. Math. Soc., 72 (1966), 685-689. Zbl0144.15503MR35 #407
- [26] J.B. WALSH, Probability and a Dirichlet Problem for Multiply Superharmonic Functions, Ann. Inst. Fourier, Grenoble, 18,2 (1968), 221-279. Zbl0172.38702
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.