Topological countability in Brelot potential theory
Annales de l'institut Fourier (1974)
- Volume: 24, Issue: 3, page 15-36
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topArmstrong, Thomas E.. "Topological countability in Brelot potential theory." Annales de l'institut Fourier 24.3 (1974): 15-36. <http://eudml.org/doc/74182>.
@article{Armstrong1974,
abstract = {Let $U$ be a domain of type $H$ in a Brelot potential theory. A compact $K$ in $U$ is a $G_\delta $ in $U$ iff $U-K$ has at most countably many components. If $F$ is a relatively closed locally polar subset of $U$, any $G_\delta $ in $F$ is a $G_\delta $ in $U$. If $V$ is a domain in $U$, all Borel subsets of $\partial V\cap U$ are Baire even if $\partial V\cap U$ is not metrizable. The known results concerning equivalences between weak thinness, thinness, and strong thinness of a set $A$ at a point $x\notin A$ are extended from the case where $\lbrace x\rbrace $ is a $G_\delta $ to the cases in which $A$ meets only countably many components of $U-\lbrace x\rbrace $ or is $K$-analytic.},
author = {Armstrong, Thomas E.},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {3},
pages = {15-36},
publisher = {Association des Annales de l'Institut Fourier},
title = {Topological countability in Brelot potential theory},
url = {http://eudml.org/doc/74182},
volume = {24},
year = {1974},
}
TY - JOUR
AU - Armstrong, Thomas E.
TI - Topological countability in Brelot potential theory
JO - Annales de l'institut Fourier
PY - 1974
PB - Association des Annales de l'Institut Fourier
VL - 24
IS - 3
SP - 15
EP - 36
AB - Let $U$ be a domain of type $H$ in a Brelot potential theory. A compact $K$ in $U$ is a $G_\delta $ in $U$ iff $U-K$ has at most countably many components. If $F$ is a relatively closed locally polar subset of $U$, any $G_\delta $ in $F$ is a $G_\delta $ in $U$. If $V$ is a domain in $U$, all Borel subsets of $\partial V\cap U$ are Baire even if $\partial V\cap U$ is not metrizable. The known results concerning equivalences between weak thinness, thinness, and strong thinness of a set $A$ at a point $x\notin A$ are extended from the case where $\lbrace x\rbrace $ is a $G_\delta $ to the cases in which $A$ meets only countably many components of $U-\lbrace x\rbrace $ or is $K$-analytic.
LA - eng
UR - http://eudml.org/doc/74182
ER -
References
top- [1] H. BAUER, Propriétés Fines des Fonctions Hyperharmoniques dans une Theorie Axiomatique du Potential, Ann. Inst. Fourier, 15, 1 (1965), 137-154. Zbl0127.05401MR32 #7772
- [2] N. BOBOC, C. CONSTANTINESCU, A. CORNEA, Axiomatic Theory of Harmonic Functions, Balayage, Ann. Inst. Fourier 15, 2 (1965), 37-70. Zbl0138.36603MR33 #1476
- [3] M. BRELOT, Lectures on Potential Theory. Bombay, Tata Inst. 1960. Zbl0098.06903MR22 #9749
- [4] M. BRELOT, Axiomatique des Fonctions Harmonique, Les Presses de l'Université de Montréal, Montreal, 1966. Zbl0148.10401
- [5] M. BRELOT, On Topologies and Boundaries in Potential Theory, Springer-Verlag, Berlin-Heidelberg-New York, 1971. Zbl0222.31014MR43 #7654
- [6] C. CONSTANTINESCU, A Topology on the Cone of Non-negative Super-harmonic Functions, Rev. Roumaine Math. Pures Appl., 10 (1965), 1331-1348. Zbl0144.36603MR35 #1804
- [7] C. CONSTANTINESCU and A. CORNEA, On the Axiomatic of Harmonic Functions, I, Ann. Inst. Fourier, 13, 2 (1963), 373-388. Zbl0122.34001MR29 #2416
- [8] C. CONSTANTINESCU and A. CORNEA, Potential Theory on Harmonic Spaces. Springer-Verlag, Berlin-Heidelberg-New York, 1972. Zbl0248.31011MR54 #7817
- [9] A. CORNEA, Sur la dénombrabilité à l'infini d'un espace harmonique de Brelot, C.R. Acad. Sci. Paris, A 264, (1967), 190-191. Zbl0151.16202MR34 #6140
- [10] R.M. HERVE, Recherches Axiomatiques sur la Théorie des Fonctions Surharmoniques et du Potential, Ann. Inst. Fourier, Grenoble, 12 (1962), 415-571. Zbl0101.08103MR25 #3186
- [11] J. KOHN, Die Harnacksche Metrik in der Theorie der Harmonischen Funktionen, Math. Zeitschr., 91 (1966), 50-64. Zbl0163.14204MR32 #2606
- [12] P. LOEB and B. WALSH, The Equivalence of Harnack's Principle and Harnack's Inequality in the Axiomatic System of Brelot, Ann. Inst. Fourier, 15, 2 (1965), 597-600. Zbl0132.33802MR32 #7773
- [13] G. MOKOBODSKI, Representations Intégrales des Fonctions Harmoniques et Surharmoniques, Unpublished.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.