The space D ( U ) is not B r -complete

Manuel Valdivia

Annales de l'institut Fourier (1977)

  • Volume: 27, Issue: 4, page 29-43
  • ISSN: 0373-0956

Abstract

top
Certain classes of locally convex space having non complete separated quotients are studied and consequently results about B r -completeness are obtained. In particular the space of L. Schwartz D ( Ω ) is not B r -complete where Ω denotes a non-empty open set of the euclidean space R m .

How to cite

top

Valdivia, Manuel. "The space $D(U)$ is not $B_r$-complete." Annales de l'institut Fourier 27.4 (1977): 29-43. <http://eudml.org/doc/74340>.

@article{Valdivia1977,
abstract = {Certain classes of locally convex space having non complete separated quotients are studied and consequently results about $B_r$-completeness are obtained. In particular the space of L. Schwartz $\{\bf D\}(\Omega )$ is not $B_r$-complete where $\Omega $ denotes a non-empty open set of the euclidean space $R^m$.},
author = {Valdivia, Manuel},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {4},
pages = {29-43},
publisher = {Association des Annales de l'Institut Fourier},
title = {The space $D(U)$ is not $B_r$-complete},
url = {http://eudml.org/doc/74340},
volume = {27},
year = {1977},
}

TY - JOUR
AU - Valdivia, Manuel
TI - The space $D(U)$ is not $B_r$-complete
JO - Annales de l'institut Fourier
PY - 1977
PB - Association des Annales de l'Institut Fourier
VL - 27
IS - 4
SP - 29
EP - 43
AB - Certain classes of locally convex space having non complete separated quotients are studied and consequently results about $B_r$-completeness are obtained. In particular the space of L. Schwartz ${\bf D}(\Omega )$ is not $B_r$-complete where $\Omega $ denotes a non-empty open set of the euclidean space $R^m$.
LA - eng
UR - http://eudml.org/doc/74340
ER -

References

top
  1. [1] A. GROTHENDIECK, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., No. 16 (1966). Zbl0123.30301
  2. [2] G. KHÖTE, Topological Vector Spaces I. Berlin-Heidelberg-New York, Springer 1969. Zbl0179.17001
  3. [3] A. PIETSCH, Nuclear locally convex spaces. Berlin-Heidelberg-New York, Springer 1972. Zbl0308.47024MR50 #2853
  4. [4] V. PTAK, Completeness and open mapping theorem, Bull. Soc. Math. France, 86 (1958), 41-74. Zbl0082.32502MR21 #4345
  5. [5] D. A. RAIKOV, On B-complete topological vector groups, Studia Math., 31 (1968), 295-306. Zbl0183.40202
  6. [6] O. G. SMOLJANOV, The space D is not hereditarily complete, Izv. Akad. Nauk SSSR, Ser. Math., 35 (3) (1971), 686-696; Math. USSR Izvestija, 5 (3) (1971), 696-710. Zbl0249.46020
  7. [7] M. VALDIVIA, On countable locally convex direct sums, Arch. d. Math., XXVI, 4 (1975), 407-413. Zbl0312.46014MR52 #1241
  8. [8] M. VALDIVIA, On Br-completeness, Ann. Inst. Fourier, Grenoble 25, 2 (1975), 235-248. Zbl0301.46004MR53 #3634
  9. [9] M. VALDIVIA, Mackey convergence and the closed graph theorem, Arch. d. Math., XXV, 6 (1974), 649-656. Zbl0297.46006MR51 #11052
  10. [10] M. VALDIVIA, The space of distributions D′(Ω) is not Br-complete, Math. Ann., 211 (1974), 145-149. Zbl0288.46033MR51 #6406

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.