The space is not -complete
Annales de l'institut Fourier (1977)
- Volume: 27, Issue: 4, page 29-43
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A. GROTHENDIECK, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., No. 16 (1966). Zbl0123.30301
- [2] G. KHÖTE, Topological Vector Spaces I. Berlin-Heidelberg-New York, Springer 1969. Zbl0179.17001
- [3] A. PIETSCH, Nuclear locally convex spaces. Berlin-Heidelberg-New York, Springer 1972. Zbl0308.47024MR50 #2853
- [4] V. PTAK, Completeness and open mapping theorem, Bull. Soc. Math. France, 86 (1958), 41-74. Zbl0082.32502MR21 #4345
- [5] D. A. RAIKOV, On B-complete topological vector groups, Studia Math., 31 (1968), 295-306. Zbl0183.40202
- [6] O. G. SMOLJANOV, The space D is not hereditarily complete, Izv. Akad. Nauk SSSR, Ser. Math., 35 (3) (1971), 686-696; Math. USSR Izvestija, 5 (3) (1971), 696-710. Zbl0249.46020
- [7] M. VALDIVIA, On countable locally convex direct sums, Arch. d. Math., XXVI, 4 (1975), 407-413. Zbl0312.46014MR52 #1241
- [8] M. VALDIVIA, On Br-completeness, Ann. Inst. Fourier, Grenoble 25, 2 (1975), 235-248. Zbl0301.46004MR53 #3634
- [9] M. VALDIVIA, Mackey convergence and the closed graph theorem, Arch. d. Math., XXV, 6 (1974), 649-656. Zbl0297.46006MR51 #11052
- [10] M. VALDIVIA, The space of distributions D′(Ω) is not Br-complete, Math. Ann., 211 (1974), 145-149. Zbl0288.46033MR51 #6406