On the Fourier transform of the symmetric decreasing rearrangements
- [1] Université d’Orléans - Faculté des Sciences MAPMO UMR CNRS 6628 Fédération Denis Poisson, FR CNRS 2964 BP 6759 45067 Orléans Cedex 2 (France) and Université Bordeaux 1 Institut de Mathématiques de Bordeaux UMR CNRS 5251 351, cours de la Libération 33405 TALENCE cedex (France)
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 1, page 53-77
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topJaming, Philippe. "On the Fourier transform of the symmetric decreasing rearrangements." Annales de l’institut Fourier 61.1 (2011): 53-77. <http://eudml.org/doc/219848>.
@article{Jaming2011,
abstract = {Inspired by work of Montgomery on Fourier series and Donoho-Strak in signal processing, we investigate two families of rearrangement inequalities for the Fourier transform. More precisely, we show that the $L^2$ behavior of a Fourier transform of a function over a small set is controlled by the $L^2$ behavior of the Fourier transform of its symmetric decreasing rearrangement. In the $L^1$ case, the same is true if we further assume that the function has a support of finite measure.As a byproduct, we also give a simple proof and an extension of a result of Lieb about the smoothness of a rearrangement. Finally, a straightforward application to solutions of the free Shrödinger equation is given.},
affiliation = {Université d’Orléans - Faculté des Sciences MAPMO UMR CNRS 6628 Fédération Denis Poisson, FR CNRS 2964 BP 6759 45067 Orléans Cedex 2 (France) and Université Bordeaux 1 Institut de Mathématiques de Bordeaux UMR CNRS 5251 351, cours de la Libération 33405 TALENCE cedex (France)},
author = {Jaming, Philippe},
journal = {Annales de l’institut Fourier},
keywords = {Fourier transform; rearrangement inequalities; Bessel functions},
language = {eng},
number = {1},
pages = {53-77},
publisher = {Association des Annales de l’institut Fourier},
title = {On the Fourier transform of the symmetric decreasing rearrangements},
url = {http://eudml.org/doc/219848},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Jaming, Philippe
TI - On the Fourier transform of the symmetric decreasing rearrangements
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 1
SP - 53
EP - 77
AB - Inspired by work of Montgomery on Fourier series and Donoho-Strak in signal processing, we investigate two families of rearrangement inequalities for the Fourier transform. More precisely, we show that the $L^2$ behavior of a Fourier transform of a function over a small set is controlled by the $L^2$ behavior of the Fourier transform of its symmetric decreasing rearrangement. In the $L^1$ case, the same is true if we further assume that the function has a support of finite measure.As a byproduct, we also give a simple proof and an extension of a result of Lieb about the smoothness of a rearrangement. Finally, a straightforward application to solutions of the free Shrödinger equation is given.
LA - eng
KW - Fourier transform; rearrangement inequalities; Bessel functions
UR - http://eudml.org/doc/219848
ER -
References
top- R. Askey, J. Steinig, Some positive trigonometric sums, Trans. Amer. Math. Soc. 187 (1974), 295-307 Zbl0244.42002MR338481
- John J. Benedetto, Hans P. Heinig, Weighted Fourier inequalities: new proofs and generalizations, J. Fourier Anal. Appl. 9 (2003), 1-37 Zbl1034.42010MR1953070
- A. Burchard, Steiner symmetrization is continuous in , Geom. Funct. Anal. 7 (1997), 823-860 Zbl0912.46034MR1475547
- Andrea Cianchi, Second-order derivatives and rearrangements, Duke Math. J. 105 (2000), 355-385 Zbl1017.46023MR1801766
- R. G. Cooke, Gibbs’ phenomenon in Fourier-Bessel series and integrals, Proc. London Math. Soc. 27 (1927), 171-192 Zbl53.0337.03
- R. G. Cooke, A monotonic property of Bessel functions, J. London Math. Soc. 12 (1937), 180-185 Zbl63.0329.02
- David L. Donoho, Philip B. Stark, Rearrangements and smoothing, Tech. Rep. (1988)
- David L. Donoho, Philip B. Stark, A note on rearrangements, spectral concentration, and the zero-order prolate spheroidal wavefunction, IEEE Trans. Inform. Theory 39 (1993), 257-260 Zbl0767.33018MR1211505
- William Feller, An introduction to probability theory and its applications. Vol. II., (1971), John Wiley & Sons Inc., New York Zbl0138.10207MR270403
- George Gasper, Positive integrals of Bessel functions, SIAM J. Math. Anal. 6 (1975), 868-881 Zbl0313.33013MR390318
- Loukas Grafakos, Classical and modern Fourier analysis, (2004), Pearson Education, Inc., Upper Saddle River, NJ Zbl1148.42001MR2449250
- Victor Havin, Burglind Jöricke, The uncertainty principle in harmonic analysis, 28 (1994), Springer-Verlag, Berlin Zbl0827.42001MR1303780
- Philippe Jaming, Nazarov’s uncertainty principles in higher dimension, J. Approx. Theory 149 (2007), 30-41 Zbl1232.42013MR2371612
- M. Jodeit, A. Tochinsky, Inequalities for the Fourier Transform, Studia Math. 37 (1971), 245-276 Zbl0224.46037MR300073
- W. B. Jurkat, G. Sampson, On maximal rearrangement inequalities for the Fourier transform, Trans. Amer. Math. Soc. 282 (1984), 625-643 Zbl0537.42029MR732111
- W. B. Jurkat, G. Sampson, On rearrangement and weighted inequalities for the Fourier transform, Indiana Univ. Math. J. 33 (1984), 257-270 Zbl0536.42013MR733899
- Bernhard Kawohl, Rearrangements and convexity of level sets in PDE, 1150 (1985), Springer-Verlag, Berlin Zbl0593.35002MR810619
- Elliott H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2) 118 (1983), 349-374 Zbl0527.42011MR717827
- Elliott H. Lieb, Michael Loss, Analysis, 14 (1997), American Mathematical Society, Providence, RI Zbl0873.26002MR1415616
- E. Makai, On a monotonic property of certain Sturm-Liouville functions, Acta Math. Acad. Sci. Hungar. 3 (1952), 165-172 Zbl0048.32302MR54103
- Jolanta K. Misiewicz, Donald St. P. Richards, Positivity of integrals of Bessel functions, SIAM J. Math. Anal. 25 (1994), 596-601 Zbl0799.33003MR1266579
- Hugh L. Montgomery, A note on rearrangements of Fourier coefficients, Ann. Inst. Fourier (Grenoble) 26 (1976), v, 29-34 Zbl0318.42009MR407517
- F. L. Nazarov, Local estimates for exponential polynomials and their applications to inequalities of the uncertainty principle type, Algebra i Analiz 5 (1993), 3-66 Zbl0801.42001MR1246419
- Gilles Pisier, The volume of convex bodies and Banach space geometry, 94 (1989), Cambridge University Press, Cambridge Zbl0698.46008MR1036275
- John Steinig, On a monotonicity property of Bessel functions, Math. Z. 122 (1971), 363-365 Zbl0208.32802MR447654
- Terence Tao, Nonlinear dispersive equations, 106 (2006), Published for the Conference Board of the Mathematical Sciences, Washington, DC Zbl1106.35001MR2233925
- Anders Vretblad, Fourier analysis and its applications, 223 (2003), Springer-Verlag, New York Zbl1032.42001MR1992764
- G. N. Watson, A treatise on the theory of Bessel functions, (1995), Cambridge University Press, Cambridge Zbl0849.33001MR1349110
- David Vernon Widder, The Laplace Transform, (1941), Princeton University Press, Princeton, N. J. Zbl0063.08245MR5923
- Antoni Zygmund, Trigonometrical series, (1955), Dover Publications, New York Zbl0065.05604MR72976
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.