Hölder estimates and hypoellipticity

André Unterberger; Julianne Unterberger

Annales de l'institut Fourier (1976)

  • Volume: 26, Issue: 2, page 35-54
  • ISSN: 0373-0956

Abstract

top
The aim of this paper is to show how, in order to prove regularity theorems, Hölder estimates, i.e. estimates involving products of powers of different semi-norms, can be used as well as standard estimates, and may in some instances be casier to prove.

How to cite

top

Unterberger, André, and Unterberger, Julianne. "Hölder estimates and hypoellipticity." Annales de l'institut Fourier 26.2 (1976): 35-54. <http://eudml.org/doc/74284>.

@article{Unterberger1976,
abstract = {The aim of this paper is to show how, in order to prove regularity theorems, Hölder estimates, i.e. estimates involving products of powers of different semi-norms, can be used as well as standard estimates, and may in some instances be casier to prove.},
author = {Unterberger, André, Unterberger, Julianne},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {2},
pages = {35-54},
publisher = {Association des Annales de l'Institut Fourier},
title = {Hölder estimates and hypoellipticity},
url = {http://eudml.org/doc/74284},
volume = {26},
year = {1976},
}

TY - JOUR
AU - Unterberger, André
AU - Unterberger, Julianne
TI - Hölder estimates and hypoellipticity
JO - Annales de l'institut Fourier
PY - 1976
PB - Association des Annales de l'Institut Fourier
VL - 26
IS - 2
SP - 35
EP - 54
AB - The aim of this paper is to show how, in order to prove regularity theorems, Hölder estimates, i.e. estimates involving products of powers of different semi-norms, can be used as well as standard estimates, and may in some instances be casier to prove.
LA - eng
UR - http://eudml.org/doc/74284
ER -

References

top
  1. [1] R. BEALS and C. FEFFERMAN, Spatially inhomogeneous pseudo-differential operators I, Comm. Pure Appl. Math., 27 (1974), 1-24. Zbl0279.35071MR50 #5234
  2. [2] K. O. FRIEDRICHS, with the assistance of R. Vaillancourt, Pseudo-differential operators, Lecture Notes, N. Y. Univ., 1968. 
  3. [3] L. HÖRMANDER, Linear partial differential operators, Springer Verlag, 1963. Zbl0108.09301
  4. [4] L. HÖRMANDER, On the singularities of solutions of partial differential equations with constant coefficients, Symp. on linear partial differential operators, Jerusalem, June 1972. Zbl0247.35005
  5. [5] L. HÖRMANDER, On the existence and regularity of solutions of linear pseudo-differential equations, L'Enseignement Mathématique, 17 (2) (1971), 99-163. Zbl0224.35084MR48 #9458
  6. [6] L. HÖRMANDER, Hypoelliptic second-order differential equations, Acta Math., 119 (1967), 147-171. Zbl0156.10701MR36 #5526
  7. [7] F. JOHN, Continuous dependance on data for solutions of partial differential equations with a prescribed bound, Comm. Pure Appl. Math., 13 (1960), 551-585. Zbl0097.08101MR24 #A317
  8. [8] J. KOHN, Pseudo-differential operators and hypoellipticity, Proc. Symp. Pure Math., 23 (1973), 61-69. Zbl0262.35007MR49 #3356
  9. [9] H. KUMANO-GO, Algebras of pseudo-differential operators, J. Fac. Sci. Univ. Tokyo, 17 (1970), 31-50. Zbl0206.10501MR45 #984
  10. [10] A. UNTERBERGER, Résolution d'équations aux dérivées partielles dans des espaces de distributions d'ordre de régularité variable, Ann. Inst. Fourier, 21 (1971), 85-128. Zbl0205.43104MR58 #29043
  11. [11] A. UNTERBERGER, Ouverts stablement convexes par rapport à un opérateur différentiel, Ann. Inst. Fourier, 22 (1972), 269-290. Zbl0228.35014MR49 #11022
  12. [12] K. WATANABE, On the boundedness of pseudo-differential operators of type ρ, δ with 0 ≤ ρ ˭ δ ˂ 1, Tôhoku Math. J., 25 (1973), 339-345. Zbl0284.35068MR49 #5948

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.