# On some spaces which are covered by a product space

Annales de l'institut Fourier (1977)

- Volume: 27, Issue: 1, page 107-134
- ISSN: 0373-0956

## Access Full Article

top## Abstract

top## How to cite

topVaisman, Izu. "On some spaces which are covered by a product space." Annales de l'institut Fourier 27.1 (1977): 107-134. <http://eudml.org/doc/74305>.

@article{Vaisman1977,

abstract = {In this note, a topological version of the results obtained, in connection with the de Rham reducibility theorem (Comment. Math. Helv., 26 ( 1952), 328–344), by S. Kashiwabara (Tôhoku Math. J., 8 (1956), 13–28), (Tôhoku Math. J., 11 (1959), 327–350) and Ia. L. Sapiro (Izv. Bysh. Uceb. Zaved. Mat. no6, (1972), 78–85, Russian), (Izv. Bysh. Uceb. Zaved. Mat. no4, (1974), 104–113, Russian) is given. Thus a characterization of a class of topological spaces covered by a product space is obtained and the geometric structure of these spaces is clarified. Also, the morphisms of such spaces are characterized and indications regarding the homotopy and homology of the space are given. Finally one applies the obtained results to topological groups and to differentiable foliations. In this last case an alternative treatment of a class of foliations studied by L. Conlon (Trans. Amer. Math. Soc., 194 (1974), 79–102) and a part of a Cheeger-Gromoll-Lichnerowicz theorem (J. of Diff. Geom., 6 (1971), 47–94) are obtained.},

author = {Vaisman, Izu},

journal = {Annales de l'institut Fourier},

language = {eng},

number = {1},

pages = {107-134},

publisher = {Association des Annales de l'Institut Fourier},

title = {On some spaces which are covered by a product space},

url = {http://eudml.org/doc/74305},

volume = {27},

year = {1977},

}

TY - JOUR

AU - Vaisman, Izu

TI - On some spaces which are covered by a product space

JO - Annales de l'institut Fourier

PY - 1977

PB - Association des Annales de l'Institut Fourier

VL - 27

IS - 1

SP - 107

EP - 134

AB - In this note, a topological version of the results obtained, in connection with the de Rham reducibility theorem (Comment. Math. Helv., 26 ( 1952), 328–344), by S. Kashiwabara (Tôhoku Math. J., 8 (1956), 13–28), (Tôhoku Math. J., 11 (1959), 327–350) and Ia. L. Sapiro (Izv. Bysh. Uceb. Zaved. Mat. no6, (1972), 78–85, Russian), (Izv. Bysh. Uceb. Zaved. Mat. no4, (1974), 104–113, Russian) is given. Thus a characterization of a class of topological spaces covered by a product space is obtained and the geometric structure of these spaces is clarified. Also, the morphisms of such spaces are characterized and indications regarding the homotopy and homology of the space are given. Finally one applies the obtained results to topological groups and to differentiable foliations. In this last case an alternative treatment of a class of foliations studied by L. Conlon (Trans. Amer. Math. Soc., 194 (1974), 79–102) and a part of a Cheeger-Gromoll-Lichnerowicz theorem (J. of Diff. Geom., 6 (1971), 47–94) are obtained.

LA - eng

UR - http://eudml.org/doc/74305

ER -

## References

top- [1] L. CONLON, Transversally parallelizable foliations of codimension two, Trans. Amer. Math. Soc., 194 (1974), 79-102. Zbl0288.57011MR51 #6844
- [2] V. A. EPHRAMOWITSCH, On non-decomposability into a topological product, Doklady Akad. Nauk S.S.S.R., 49 (1945), 470-471. Zbl0060.40908
- [3] C. GODBILLON, Feuilletages ayant la propriété du prolongement des homotopies, Ann. Inst. Fourier Grenoble, 17 (1967), 219-260. Zbl0186.57301MR37 #2255
- [4] P.J. HILTON, Remark on the factorization of spaces, Bull, Acad. Polon. Sci., 3 (1955), 579-581. Zbl0067.15703MR17,653a
- [5] S. KASHIWABARA, On the reducibility of an affinely connected manifold, Tôhoku Math. J., 8 (1956). 13-28. Zbl0074.37904MR18,332f
- [6] S. KASHIWABARA, The decomposition of a differentiable manifold and its applications, Tôhoku Math. J., 11 (1959), 43-53. Zbl0131.19902MR21 #5998
- [7] S. KASHIWABARA, The structure of a Riemannian manifold admitting a paralel field of one-dimensional tangent vector subspaces, Tôhoku Math. J., 11 (1959), 327-350. Zbl0106.15103MR22 #4076
- [8] S. KOBAYASHI and K. NOMIZU, Foundations of Differential Geometry I, II. Interscience, New York, 1963, 1969. Zbl0175.48504
- [9] K. KURATOWSKI, Topology I, II. Academic Press, New York, 1966, 1968. Zbl0158.40901
- [10] A. LICHNEROWICZ, Variétés kähleriennes à première classe de Chern non négative et variétés riemanniennes à courbure de Ricci généralisée non négative, J. of Diff. Geom., 6 (1971), 47-94. Zbl0231.53063MR45 #9274
- [11] J. MEYER, e-foliations of codimension two (Preprint). Zbl0421.57008
- [12] S.P. NOVIKOV, Topology of foliations, Trudy Mosk. Mat. Obšč., 14 (1965), 248-278 (Russian). Zbl0247.57006MR34 #824
- [13] R.S. PALAIS, A global formulation of the Lie theory of transformation groups, Memoirs Amer. Math. Soc., 22, Providence R.I., 1957. Zbl0178.26502MR22 #12162
- [14] G. REEB, Sur certaines propriétés topologiques des variétés feuilletées, Act. Sc. et Ind., Hermann, Paris, 1952. Zbl0049.12602MR14,1113a
- [15] G. REEB, Sur la théorie générale des systèmes dynamiques, Ann. Inst. Fourier Grenoble, 6 (1955) 89-115. Zbl0071.11001MR18,407e
- [16] G. de RHAM, Sur la réductibilité d'un espace de Riemann, Comment. Math. Helv., 26 (1952), 328-344. Zbl0048.15701MR14,584a
- [17] Ia. L. ŠAPIRO, On reducible Riemannian manifolds in the whole, Izv. Bysh. Učeb. Zaved. Mat. no. 6, (1972), 78-85 (Russian).
- [18] Ia. L. ŠAPIRO, On the bifoliated structure of a reducible Riemannian manifold, Izv. Bysh. Učeb. Zaved. Mat., no. 12 (1972), 102-110 (Russian). Zbl0257.53042
- [19] Ia. L. ŠAPIRO, On S-reducible manifolds, Izv. Bysh. Učeb. Zaved. Mat., no. 1 (1973), 110-119 (Russian).
- [20] Ia. L. ŠAPIRO, Static Riemannian spaces in the whole, Izv. Bysh. Učeb. Zaved. Mat., no. 3, (1974), 78-88 (Russian).
- [21] Ia. L. ŠAPIRO and N.J. ŽUKOVA, On simple transversal bifibrations, Izv. Bysh. Učeb. Zaved., no. 4 (1974), 104-113 (Russian). Zbl0285.57024
- [22] E.H. SPANIER, Algebraic Topology. Mc Graw-Hill, New York, 1966. Zbl0145.43303
- [23] I. VAISMAN, Variétés riemanniennes feuilletées, Czechosl. Math. J., 21 (1971), 46-75. Zbl0212.54202MR44 #4776
- [24] P. WANG, Decomposition theorems of Riemannian manifolds., Trans. Amer. Math. Soc., 184 (1973), 327-341. Zbl0242.53025MR48 #7166
- [25] H. WU, On the de Rham decomposition theorem, Illinois J. Math., 8 (1964), 291-311. Zbl0122.40005MR28 #4488

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.