Unions et intersections d’espaces L p invariantes par translation ou convolution

Jean-Paul Bertrandias; Christian Datry; Christian Dupuis

Annales de l'institut Fourier (1978)

  • Volume: 28, Issue: 2, page 53-84
  • ISSN: 0373-0956

Abstract

top
This paper is concerned with properties of unions and intersections of L p ( s ) spaces where s belongs to a set S of positive measures on a locally compact abelian group and where S is translation invariant or convolution invariant.In special cases, we find again properties of spaces studied by A. Beurling and by B. Koremblium.We also study the spaces p ( L p ' ) of functions belonging locally to L p ' and with p behaviour at infinity.

How to cite

top

Bertrandias, Jean-Paul, Datry, Christian, and Dupuis, Christian. "Unions et intersections d’espaces $L^p$ invariantes par translation ou convolution." Annales de l'institut Fourier 28.2 (1978): 53-84. <http://eudml.org/doc/74361>.

@article{Bertrandias1978,
abstract = {Étude des propriétés des unions et intersections d’espaces $L^p(s)$ relatifs à un ensemble $S$ de mesures positives sur un groupe commutatif localement compact lorsque $S$ est invariant par translation ou stable par convolution.Dans des cas particuliers, on retrouve les propriétés d’espaces étudiés par A. Beurling et par B. Koremblium.On étudie aussi les espaces $\ell ^p(L^\{p^\{\prime \}\})$ formés des fonctions appartenant localement à $L^\{p^\{\prime \}\}$ et qui ont un comportement $\ell ^p$ à l’infini.},
author = {Bertrandias, Jean-Paul, Datry, Christian, Dupuis, Christian},
journal = {Annales de l'institut Fourier},
language = {fre},
number = {2},
pages = {53-84},
publisher = {Association des Annales de l'Institut Fourier},
title = {Unions et intersections d’espaces $L^p$ invariantes par translation ou convolution},
url = {http://eudml.org/doc/74361},
volume = {28},
year = {1978},
}

TY - JOUR
AU - Bertrandias, Jean-Paul
AU - Datry, Christian
AU - Dupuis, Christian
TI - Unions et intersections d’espaces $L^p$ invariantes par translation ou convolution
JO - Annales de l'institut Fourier
PY - 1978
PB - Association des Annales de l'Institut Fourier
VL - 28
IS - 2
SP - 53
EP - 84
AB - Étude des propriétés des unions et intersections d’espaces $L^p(s)$ relatifs à un ensemble $S$ de mesures positives sur un groupe commutatif localement compact lorsque $S$ est invariant par translation ou stable par convolution.Dans des cas particuliers, on retrouve les propriétés d’espaces étudiés par A. Beurling et par B. Koremblium.On étudie aussi les espaces $\ell ^p(L^{p^{\prime }})$ formés des fonctions appartenant localement à $L^{p^{\prime }}$ et qui ont un comportement $\ell ^p$ à l’infini.
LA - fre
UR - http://eudml.org/doc/74361
ER -

References

top
  1. [1] L. N. ARGABRIGHT and J. GIL DE LAMADRID, Fourier analysis of unbounded measures on locally compact abelian groups, Memoirs of the Ann. Math. Soc., n° 145 (1974). Zbl0294.43002MR58 #29842
  2. [2] A. BENEDEK and R. PANZONE, The spaces Lp, with mixed norm, Duke Math. J., 28 (1961), 301-324. Zbl0107.08902
  3. [3] C. BERG and G. FORST, Potential theory on locally compact abelian groups, Springer 1975. Zbl0308.31001MR58 #1204
  4. [4] J.-P. BERTRANDIAS, Unions et intersections d'espaces Lp sur un espace localement compact, Bull. Sc. Math., 101 (1977). Zbl0376.46016MR58 #23529
  5. [5] J.-P. BERTRANDIAS et C. DUPUIS, Transformation de Fourier sur les espace lp(Lp'), Ann. Inst. Fourier 29 (1979). Zbl0387.42003MR82a:43006
  6. [6] A. BEURLING, Construction and analysis of some convolution algebras, Ann. Inst. Fourier, 14 (1964), 1-32. Zbl0133.07501MR32 #321
  7. [7] D. H. FREMLIN, Topological Riesz spaces and measure theory, Cambridge, 1974. Zbl0273.46035MR56 #12824
  8. [8] R. GOLDBERG, On a space of functions of Wiener, Duke Math. J., 34 (1967), 683-691. Zbl0172.16203MR36 #703
  9. [9] E. HEWITT, A survey of abstract harmonic analysis, dans : Some aspects of analysis and probability, Wiley & sons, 1958. Zbl0089.10806MR21 #2159
  10. [10] E. HEWITT and K. A. Ross, Abstract harmonic analysis. 2 volumes, Springer, 1963 et 1970. Zbl0115.10603
  11. [11] F. HOLLAND, Harmonic analysis on amalgams of Lp and Lq, J. London Math. Soc., 2, 10 (1975), 295-305. Zbl0314.46029MR51 #11013
  12. [12] B. KOREMBLIUM, On certain special commutative normed rings. (en russe), Doklady Akad. Nauk SSSR, 64 (1949), 281-284. 
  13. [13] R. LARSEN, Measures with separable orbits, Proc. Am. Math. Soc., 19 (1968), 569-572. Zbl0157.06801MR37 #6689
  14. [14] H. REITER, Classical harmonic analysis and locally compact groups, Clarendon Press, Oxford, 1968. Zbl0165.15601MR46 #5933
  15. [15] H. REITER, L1-algebras and Segal algebras, Lectures Notes n° 231, Springer 1971. Zbl0219.43003MR55 #13158
  16. [16] W. RUDIN, Measures algebras on abelian groups, Bull. Am. Math. Soc., 65 (1959), 227-247. Zbl0089.10901MR21 #7404
  17. [17] P. SZEPTYCKI, On functions and measures whose Fourier transforms are functions, Math. Ann., 179 (1968), 31-41. Zbl0167.41601MR39 #710
  18. [18] N. WIENER, Tauberian theorems, Ann. of Math., 33 (1932), 1-100. Zbl0004.05905JFM58.0226.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.