On some ergodic properties for continuous and affine functions
Annales de l'institut Fourier (1978)
- Volume: 28, Issue: 3, page 209-215
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBatty, Charles J. K.. "On some ergodic properties for continuous and affine functions." Annales de l'institut Fourier 28.3 (1978): 209-215. <http://eudml.org/doc/74372>.
@article{Batty1978,
abstract = {Two problems posed by Choquet and Foias are solved:(i) Let $T$ be a positive linear operator on the space $C(X)$ of continuous real-valued functions on a compact Hausdorff space $X$. It is shown that if $n^\{-1\}\sum ^\{n-1\}_\{r=0\} T^r1$ converges pointwise to a continuous limit, then the convergence is uniform on $X$.(ii) An example is given of a Choquet simplex $K$ and a positive linear operator $T$ on the space $A(K)$ of continuous affine real-valued functions on $K$, such that\begin\{\}\{\rm inf\}\lbrace (T^n1)(x) : n\ge \rbrace < 1\end\{\}for each $x$ in $\partial _\ell K$, but $\Vert T^n1\Vert $ does not converge to 0.},
author = {Batty, Charles J. K.},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {3},
pages = {209-215},
publisher = {Association des Annales de l'Institut Fourier},
title = {On some ergodic properties for continuous and affine functions},
url = {http://eudml.org/doc/74372},
volume = {28},
year = {1978},
}
TY - JOUR
AU - Batty, Charles J. K.
TI - On some ergodic properties for continuous and affine functions
JO - Annales de l'institut Fourier
PY - 1978
PB - Association des Annales de l'Institut Fourier
VL - 28
IS - 3
SP - 209
EP - 215
AB - Two problems posed by Choquet and Foias are solved:(i) Let $T$ be a positive linear operator on the space $C(X)$ of continuous real-valued functions on a compact Hausdorff space $X$. It is shown that if $n^{-1}\sum ^{n-1}_{r=0} T^r1$ converges pointwise to a continuous limit, then the convergence is uniform on $X$.(ii) An example is given of a Choquet simplex $K$ and a positive linear operator $T$ on the space $A(K)$ of continuous affine real-valued functions on $K$, such that\begin{}{\rm inf}\lbrace (T^n1)(x) : n\ge \rbrace < 1\end{}for each $x$ in $\partial _\ell K$, but $\Vert T^n1\Vert $ does not converge to 0.
LA - eng
UR - http://eudml.org/doc/74372
ER -
References
top- [1] G. CHOQUET and C. FOIAS, Solution d'un problème sur les itérés d'un opérateur positif sur C (K) et propriétés de moyennes associées, Ann. Inst. Fourier (Grenoble), 24, no. 3 & 4 (1975), 109-129. Zbl0303.47004MR53 #11017
- [2] J. DIXMIER, Les C*-algèbres et leurs représentations, 2nd ed., Gauthier-Villars, Paris, 1969. Zbl0174.18601
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.