Intersection properties of balls in spaces of compact operators

Asvald Lima

Annales de l'institut Fourier (1978)

  • Volume: 28, Issue: 3, page 35-65
  • ISSN: 0373-0956

Abstract

top
We study the connection between intersection properties of balls and the existence of large faces of the unit ball in Banach spaces. Hanner’s result that a real space has the 3.2 intersection property if an only if disjoint faces of the unit ball are contained in parallel hyperplanes is extended to infinite dimensional spaces. It is shown that the space of compact operators from a space X to a space Y has the 3.2 intersection property if and only if X and Y have the 3.2 intersection property and either X or Y * is isometric to an L 1 ( μ ) -space.

How to cite

top

Lima, Asvald. "Intersection properties of balls in spaces of compact operators." Annales de l'institut Fourier 28.3 (1978): 35-65. <http://eudml.org/doc/74375>.

@article{Lima1978,
abstract = {We study the connection between intersection properties of balls and the existence of large faces of the unit ball in Banach spaces. Hanner’s result that a real space has the 3.2 intersection property if an only if disjoint faces of the unit ball are contained in parallel hyperplanes is extended to infinite dimensional spaces. It is shown that the space of compact operators from a space $X$ to a space $Y$ has the 3.2 intersection property if and only if $X$ and $Y$ have the 3.2 intersection property and either $X$ or $Y^*$ is isometric to an $L_1(\mu )$-space.},
author = {Lima, Asvald},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {3},
pages = {35-65},
publisher = {Association des Annales de l'Institut Fourier},
title = {Intersection properties of balls in spaces of compact operators},
url = {http://eudml.org/doc/74375},
volume = {28},
year = {1978},
}

TY - JOUR
AU - Lima, Asvald
TI - Intersection properties of balls in spaces of compact operators
JO - Annales de l'institut Fourier
PY - 1978
PB - Association des Annales de l'Institut Fourier
VL - 28
IS - 3
SP - 35
EP - 65
AB - We study the connection between intersection properties of balls and the existence of large faces of the unit ball in Banach spaces. Hanner’s result that a real space has the 3.2 intersection property if an only if disjoint faces of the unit ball are contained in parallel hyperplanes is extended to infinite dimensional spaces. It is shown that the space of compact operators from a space $X$ to a space $Y$ has the 3.2 intersection property if and only if $X$ and $Y$ have the 3.2 intersection property and either $X$ or $Y^*$ is isometric to an $L_1(\mu )$-space.
LA - eng
UR - http://eudml.org/doc/74375
ER -

References

top
  1. [1] E. ALFSEN and E. EFFROS, Structure in real Banach spaces, Ann. of Math., 96 (1972), 98-173. Zbl0248.46019MR50 #5432
  2. [2] S.J. BERNAU and H.E. LACEY. Bicontractive projections and reordering of Lp-spaces. Zbl0351.46005
  3. [3] J. DIESTEL, Geometry of Banach spaces-Selected Topics, Lecture notes in Mathematics, 485, Springer Verlag, 1975. Zbl0307.46009MR57 #1079
  4. [4] A.J. ELLIS, The duality of partially ordered normed linear spaces, J. London Math. Soc., 39 (1964), 713-744. Zbl0131.11302MR29 #6275
  5. [5] O. HANNER, Intersection of translates of convex bodies, Math. Scand., 4 (1956), 65-87. Zbl0070.39302MR18,595b
  6. [6] J. HENNEFELD, A decomposition for B(X)* and unique Hahn-Banach extensions, Pacific J. Math., 46 (1973), 197-199. Zbl0272.46013MR51 #6492
  7. [7] B. HIRSBERG and A.J. LAZAR, Complex Lindenstrauss spaces with extreme points, Trans. Amer. Math. Soc., 186 (1973), 144-150. Zbl0244.46013MR48 #11996
  8. [8] O. HUSTAD, Intersection properties of balls in complex Banach spaces whose duals are L1-spaces, Acta Math., 132 (1974), 283-313. Zbl0309.46025MR52 #8886
  9. [9] E.H. LACEY, The isometric theory of classical Banach spaces, Die Grundlehren der math. Wissenschaften, Band 208, Springer-Verlag, 1974. Zbl0285.46024MR58 #12308
  10. [10] A.J. LAZAR, Affine functions on simplexes and extreme operators, Israel J. Math., 5 (1967), 31-43. Zbl0149.08703MR35 #2128
  11. [11] A.J. LAZAR and J. LINDENSTRAUSS, Banach spaces whose duals are L1-spaces and their representing matrices, Acta Math., 126 (1971), 165-193. Zbl0209.43201MR45 #862
  12. [12] A. LIMA, Intersection properties of balls and subspaces in Banach spaces, Trans. Amer. Math. Soc., 227 (1977), 1-62. Zbl0347.46017MR55 #3752
  13. [13] A. LIMA, Complex Banach spaces whose duals are L1-spaces, Israel J. Math., 24 (1976), 59-72. Zbl0334.46014MR54 #13538
  14. [14] A. LIMA, An application of a theorem of Hirsberg and Lazar, Math. Scand., 38 (1976), 325-340. Zbl0336.46019MR55 #8758
  15. [15] J. LINDENSTRAUSS, Extensions of compact operators, Memoirs Amer. Math. Soc., 48 (1964). Zbl0141.12001MR31 #3828
  16. [16] J. LINDENSTRAUSS and H.P. ROSENTHAL, The Lp-spaces, Israel J. Math., 7 (1969), 325-349. Zbl0205.12602MR42 #5012
  17. [17] J. LINDENSTRAUSS and L. TZAFRIRI, Classical Banach spaces, Vol. 1, Ergebnisse der math., 92, Springer-Verlag, (1977). Zbl0362.46013MR58 #17766
  18. [18] N.J. NIELSEN and G.H. OLSEN, Complex preduals of L1 and subspaces of 1n∞(C), Math. Scand., 40 (1977), 271-287. Zbl0377.46007MR56 #12846
  19. [19] G.H. OLSEN, Edwards separation theorem for complex Lindenstrauss spaces with applications to selection and embedding theorems, Math. Scand., 38 (1975), 97-105. Zbl0354.46013MR53 #11343
  20. [20] M. SHARIR, A note on extreme elements in A0(K,E), Proc. Amer. Math. Soc., 46 (1974), 244-246. Zbl0293.47015MR51 #11075
  21. [21] M. SHARIR, Extremal structure in operator spaces, Trans. Amer. Math. Soc., 186 (1973), 91-111. Zbl0254.47057MR48 #12151
  22. [22] R.M. BLUMENTHAL, J. LINDENSTRAUSS and R.R. PHELPS, Extreme operators into C(K), Pacific J. Math., 15 (1965), 747-756. Zbl0141.32101MR35 #758
  23. [23] H. FAKHOURY, Préduaux de L-espaces et éléments extrémaux, C.R. Acad. Sci., Paris Sér A-B, 272 (1971), A1703-A1706. Zbl0212.14602MR43 #6700
  24. [24] H. FAKHOURY, Approximation par des opérateurs compacts ou faiblement compacts à valeurs dans C(X), C.R. Acad. Sci., Paris, t. 283 (1976) Série A, 615-618. Zbl0338.41019MR54 #13556
  25. [25] G. CHOQUET and P.M. MEYER, Existence et unicité des représentations intégrales dans les convexes compacts quelconques, Ann. Inst. Fourier, Grenoble, 13 (1963), 133-154. Zbl0122.34602MR26 #6748
  26. [26] M. HASUMI, The extension property of complex Banach spaces, Tohoku Math. J. (sec. series), 10 (1958), 135-142. Zbl0087.10901MR20 #7209
  27. [27] H.H. SCHAEFER, Banach Lattices and Positive Operators, Die Grundlehren der math. Wissenschaften, Band 215, Springer-Verlag, 1974. Zbl0296.47023MR54 #11023
  28. [28] V. ZIZLER, On some extremal problems in Banach spaces, Math. Scand., 32 (1973), 214-224. Zbl0269.46014MR49 #11217
  29. [29] E. ALFSEN, Compact convex sets and boundary integrals, Ergebnisse der math., 57, Springer Verlag, 1971. Zbl0209.42601MR56 #3615

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.