Solving power series equations. II. Change of ground field

Joseph Becker

Annales de l'institut Fourier (1979)

  • Volume: 29, Issue: 2, page 1-23
  • ISSN: 0373-0956

Abstract

top
We study the effect of changing the residue field, on the topological properties of local algebra homomorphisms of analytic algebras (quotients of convergent power series rings). Although injectivity is not preserved, openness and closedness in the Krull topology, simple topology, and inductive topology is preserved.

How to cite

top

Becker, Joseph. "Solving power series equations. II. Change of ground field." Annales de l'institut Fourier 29.2 (1979): 1-23. <http://eudml.org/doc/74408>.

@article{Becker1979,
abstract = {We study the effect of changing the residue field, on the topological properties of local algebra homomorphisms of analytic algebras (quotients of convergent power series rings). Although injectivity is not preserved, openness and closedness in the Krull topology, simple topology, and inductive topology is preserved.},
author = {Becker, Joseph},
journal = {Annales de l'institut Fourier},
keywords = {power series equations; change of ground field; topological properties; analytic algebra},
language = {eng},
number = {2},
pages = {1-23},
publisher = {Association des Annales de l'Institut Fourier},
title = {Solving power series equations. II. Change of ground field},
url = {http://eudml.org/doc/74408},
volume = {29},
year = {1979},
}

TY - JOUR
AU - Becker, Joseph
TI - Solving power series equations. II. Change of ground field
JO - Annales de l'institut Fourier
PY - 1979
PB - Association des Annales de l'Institut Fourier
VL - 29
IS - 2
SP - 1
EP - 23
AB - We study the effect of changing the residue field, on the topological properties of local algebra homomorphisms of analytic algebras (quotients of convergent power series rings). Although injectivity is not preserved, openness and closedness in the Krull topology, simple topology, and inductive topology is preserved.
LA - eng
KW - power series equations; change of ground field; topological properties; analytic algebra
UR - http://eudml.org/doc/74408
ER -

References

top
  1. [1] S. S. ABHYANKAR, Local Analytic Geometry, Academic Press, 1964. Zbl0205.50401MR31 #173
  2. [2] S. S. ABHYANKAR, and M. VAN DER PUT, Homomorphisms of analytic local rings, Creile's J., 42 (1970), 26-60. Zbl0193.00501MR41 #5353
  3. [3] S. S. ABHYANKAR, and T. T. MOH, A reduction theorem for divergent power series, Creile's J., 241 (1970), 27-33. Zbl0191.04403MR41 #3800
  4. [4] M. ARTIN, Algebraic approximation of structures over complete local rings, Inst. des Hautes études Scientifiques Publ. Math., 36 (1969), 23-58. Zbl0181.48802MR42 #3087
  5. [5] M. ARTIN. On solutions of analytic equations, Invent. Math., 5 (1968), 277-291. Zbl0172.05301MR38 #344
  6. [6] J. BECKER, Expose on a Conjecture of Tougeron, Ann. Inst. Fourier, 27, 4 (1977), 9-27. Zbl0337.14002MR58 #10904
  7. [7] J. BECKER, Nonflatness of analytic tensor product, Math. Ann. to appear. Zbl0404.12018
  8. [8] J. BECKER and L. LIPSHITZ, Remarks on the Elementary Theories of Formal and Convergent Power Series, Fund. Math., to appear. Zbl0526.13016
  9. [9] J. BECKER, and W. ZAME, Applications of Functional Analysis to solutions of Power Series Equations, preprint. Zbl0413.13015
  10. [10] R. BERGER, R. KIEHL, E. KUNZ and H. J. NASTOLD, Differentialrechnung in der analytischen Geometrie, Lecture Notes in Mathematics No. 38, Springer Verlag, 1967. Zbl0163.03202MR37 #469
  11. [11] BOURBAKI, Commutative Algebra (Herman, Paris), 1964. 
  12. [12] A. M. GABRIELOV, Formal relations between analytic functions, Izv. Akad. Nauk. S.S.R., 37 (1973), 1056-1088. Zbl0297.32007
  13. [13] H. GRAUERT, and R. REMMERT, Analytische Stellenalgebraen, Springer Verlag, 1971. Zbl0231.32001
  14. [14] G. HARRIS, and P. EAKIN, When Φ(f) Convergent Implies f is Convergent, Math. Ann., 229 (1977), 201-210. Zbl0355.13010MR56 #3001
  15. [15] N. JACOBSON, Lectures in abstract algebra, Vol. 3, Van Nostrand, 1967. 
  16. [16] M. NAGATA, Local rings, Interscience publishers, New York, 1962. Zbl0123.03402MR27 #5790
  17. [17] G. PFISTER, and D. POPESCU, Die Strenge Approximation-seigenschaft lokaler Ringe, Invent. Math., 30 (1975), 145-174. Zbl0293.13011MR52 #395
  18. [18] J. C. TOUGERON, Courbes analytiques sur un germe d'espace analytique et applications, Ann. Inst. Fourier, Grenoble, 26, 2 (1976), 117-131. Zbl0318.32005MR54 #3011
  19. [19] O. ZARISKI, and P. SAMUEL, Commutative Algebra Vols. I et II, Van Nostrand, 1960. Zbl0121.27801MR22 #11006

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.