Une classe de symboles new-look

André Hirschowitz

Annales de l'institut Fourier (1980)

  • Volume: 30, Issue: 3, page 199-217
  • ISSN: 0373-0956

Abstract

top
We construct, in a geometric way, a class of symbols which are classical except along some submanifold. The parametrics of i = 1 n - 1 x i 4 + x n 3 and x n 3 + i = 1 n - 1 x i 2 , for instance, belong to the associated class of pseudodifferential operators.

How to cite

top

Hirschowitz, André. "Une classe de symboles new-look." Annales de l'institut Fourier 30.3 (1980): 199-217. <http://eudml.org/doc/74459>.

@article{Hirschowitz1980,
abstract = {On construit par voie géométrique une classe de symboles classiques en dehors d’une sous-variété. La classe d’opérateurs pseudodifférentiels associée contient les paramétrix d’opérateurs tels que $\sum ^\{n-1\}_\{i=1\}\big (\{\partial \over \partial x_i\}\big )^4 +\big (\{\partial \over \partial x_n\}\big )^3$ ou $\big (\{\partial \over \partial x_n\}\big )^3+ \sum ^\{n-1\}_\{i=1\} \big (\{\partial \over \partial x_i\}\big )^2.$},
author = {Hirschowitz, André},
journal = {Annales de l'institut Fourier},
keywords = {pseudodifferential operators; hypoelliptic operators; parametrices},
language = {fre},
number = {3},
pages = {199-217},
publisher = {Association des Annales de l'Institut Fourier},
title = {Une classe de symboles new-look},
url = {http://eudml.org/doc/74459},
volume = {30},
year = {1980},
}

TY - JOUR
AU - Hirschowitz, André
TI - Une classe de symboles new-look
JO - Annales de l'institut Fourier
PY - 1980
PB - Association des Annales de l'Institut Fourier
VL - 30
IS - 3
SP - 199
EP - 217
AB - On construit par voie géométrique une classe de symboles classiques en dehors d’une sous-variété. La classe d’opérateurs pseudodifférentiels associée contient les paramétrix d’opérateurs tels que $\sum ^{n-1}_{i=1}\big ({\partial \over \partial x_i}\big )^4 +\big ({\partial \over \partial x_n}\big )^3$ ou $\big ({\partial \over \partial x_n}\big )^3+ \sum ^{n-1}_{i=1} \big ({\partial \over \partial x_i}\big )^2.$
LA - fre
KW - pseudodifferential operators; hypoelliptic operators; parametrices
UR - http://eudml.org/doc/74459
ER -

References

top
  1. [1] L. BOUTET DE MONVEL, Hypoelliptic operators with double characteristics and related pseudodifferential operators, Comm. Pure and Appl. Math., XXVII (1974), 585-639. Zbl0294.35020MR51 #6498
  2. [2] J.J. DUISTERMAAT, Fourier Integral Operators, Courant Institute of Math. Sciences, New York University, 1973. Zbl0272.47028MR56 #9600
  3. [3] J.J. DUISTERMAAT, Oscillatory Integrals, Lagrange Immersions and Unfolding of Singularities, Comm. Pure and Appl. Math., XXVII (1974), 207-281. Zbl0285.35010MR53 #9306
  4. [4] J.J. DUISTERMAAT, L. HÖRMANDER, Fourier Integral Operators II, Acta Math., 128 (1972), 183-265. Zbl0232.47055MR52 #9300
  5. [5] V. GUILLEMIN, Singular Symbols, Preprint, 1975. 
  6. [6] B. HELFFER, Invariants associés à une classe d'opd et applications à l'hypoellipticité, Ann. Inst. Fourier, XXVI Fasc. 2 (1976), 55-70. Zbl0301.35026MR54 #1318
  7. [7] L. HÖRMANDER, Hypoelliptic differential operators, Ann. Inst. Fourier, XI (1961), 477-492. Zbl0099.30101MR23 #A3368
  8. [8] L. HÖRMANDER, Fourier Integral Operators I, Acta Math., 127 (1971), 79-183. Zbl0212.46601MR52 #9299

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.