The order structure of the space of measures with continuous translation
Annales de l'institut Fourier (1982)
- Volume: 32, Issue: 2, page 67-110
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topSleijpen, Gérard L. G.. "The order structure of the space of measures with continuous translation." Annales de l'institut Fourier 32.2 (1982): 67-110. <http://eudml.org/doc/74542>.
@article{Sleijpen1982,
abstract = {Let $G$ be a locally compact group, and let $\Vert ~~\Vert ^B_\infty $ be a function norm on $L^1(G)_\{\rm loc\}$ such that the space $L^\infty (G,B)$ of all locally integrable functions with finite $\Vert ~~\Vert ^B_\infty $-norm is an invariant solid Banach function space. Consider the space $L_\{\rm RUC\}(G,B)$ of all functions in $L^\infty (G,B)$ of which the right translation is a continuous map from $G$ into $L^\infty (G,B)$. Characterizations of the case where $L_\{\rm RUC\}(G,B)$ is a Riesz ideal of $L^\infty (G,B)$ are given in terms of the order-continuity of $\Vert ~~\Vert ^B_\infty $ on certain subspaces of $L^\infty (G)$. Throughout the paper, the discussion is carried out in the context of and all the results are formulated for foundation semigroups with identity element; any locally compact group is an example of such a semigroup.},
author = {Sleijpen, Gérard L. G.},
journal = {Annales de l'institut Fourier},
keywords = {Riesz ideal; function spaces with continuous translation},
language = {eng},
number = {2},
pages = {67-110},
publisher = {Association des Annales de l'Institut Fourier},
title = {The order structure of the space of measures with continuous translation},
url = {http://eudml.org/doc/74542},
volume = {32},
year = {1982},
}
TY - JOUR
AU - Sleijpen, Gérard L. G.
TI - The order structure of the space of measures with continuous translation
JO - Annales de l'institut Fourier
PY - 1982
PB - Association des Annales de l'Institut Fourier
VL - 32
IS - 2
SP - 67
EP - 110
AB - Let $G$ be a locally compact group, and let $\Vert ~~\Vert ^B_\infty $ be a function norm on $L^1(G)_{\rm loc}$ such that the space $L^\infty (G,B)$ of all locally integrable functions with finite $\Vert ~~\Vert ^B_\infty $-norm is an invariant solid Banach function space. Consider the space $L_{\rm RUC}(G,B)$ of all functions in $L^\infty (G,B)$ of which the right translation is a continuous map from $G$ into $L^\infty (G,B)$. Characterizations of the case where $L_{\rm RUC}(G,B)$ is a Riesz ideal of $L^\infty (G,B)$ are given in terms of the order-continuity of $\Vert ~~\Vert ^B_\infty $ on certain subspaces of $L^\infty (G)$. Throughout the paper, the discussion is carried out in the context of and all the results are formulated for foundation semigroups with identity element; any locally compact group is an example of such a semigroup.
LA - eng
KW - Riesz ideal; function spaces with continuous translation
UR - http://eudml.org/doc/74542
ER -
References
top- [1] A. C. BAKER and J. W. BAKER, Algebras of measures on a locally compact semigroup II, J. London Math. Soc. (2), 4 (1972), 685-695. Zbl0232.43002MR46 #5928
- [2] J.-P. BERTRANDIAS, Unions et intersections d'espaces Lp sur un espace localement compact, Bull. Sc. Math., (2), 101 (1977), 209-247. Zbl0376.46016MR58 #23529
- [3] H. A. M. DZINOTYIWEYI and G. L. G. SLEIJPEN, A note on measures on foundation semigroups with weakly compact orbits, Pac. Journal Math. (1), 81 (1979), 61-69. Zbl0423.43001MR80f:43002
- [4] D. A. EDWARDS, On translates of L∞-functions, J. London Math. Soc., 36 (1961), 431-432. Zbl0103.33702MR25 #1239
- [5] R. E. EDWARDS, E. HEWITT and G. RITTER, Fourier multipliers for certain spaces of functions with compact support, Inventiones Math., 40 (1977), 37-57. Zbl0351.43006MR55 #8696
- [6] H. G. FEICHTINGER, On a class of convolution algebras of functions, Ann. Inst. Fourier, Grenoble, 27, 3 (1977), 135-162. Zbl0316.43004MR57 #10358
- [7] H. G. FEICHTINGER, Multipliers of Banach spaces of functions on groups, Math. Z., 152 (1976), 47-58. Zbl0324.43005MR55 #982
- [8] H. G. FEICHTINGER, A characterization of Wiener's algebra on locally compact groups, Arch. Math., 39 (1977), 136-140. Zbl0363.43003MR57 #7035
- [9] D. H. FREMLIN, Topological Riesz-spaces and measure theory, Cambridge Univ. Press, (1974). Zbl0273.46035MR56 #12824
- [10] G. G. GOULD, On a class of integration spaces, J. London Math. Soc., 34 (1959), 161-172. Zbl0099.09503MR21 #3756
- [11] H. KHARAGHANI, The weaky continuous left translations of measures with applications to invariant means, preprint.
- [12] T.-S. LIU, A. C. M. van ROOIJ and J.-K. WANG, On some group modules related to Wiener's algebra M1, Pac. Journal Math. (2), 55 (1974), 507-520. Zbl0303.43011
- [13] H. PORTA, L. A. RUBEL and A. L. SHIELDS, Separability of orbits of functions on locally compact groups, Studia Math., 48 (1973), 89-94. Zbl0238.43003MR49 #1005
- [14] H. H. SCHAEFFER, Banach-Lattices and Positive Operators, Springer-Verlag, Berlin Heidelberg New-York, (1974). Zbl0296.47023
- [15] G. L. G. SLEIJPEN, Locally compact semigroups and continuous translations of measures, Proc. London Math. Soc., (3), 37 (1978), 75-97. Zbl0371.22004MR58 #17682a
- [16] G. L. G. SLEIJPEN, Emaciated sets and measures with continuous translations, Proc. London Math. Soc., (3), 37 (1978), 98-119. Zbl0371.22005MR58 #17682b
- [17] G. L. G. SLEIJPEN, L-multipliers for foundation semigroups with identity element, Proc. London Math. Soc., (3), 39 (1979), 299-330. Zbl0371.22003MR80k:43003
- [18] G. L. G. SLEIJPEN, The support of the Wiener algebra on stips, Indag. Math., 42 (1980), 61-82. Zbl0432.43001MR81j:43007
- [19] G. L. G. SLEIJPEN, Lp-spaces on foundation semigroups with identity element, Report 7906, Mathematical Institute, Catholic University, Nijmegen (1979). Zbl0371.22003
- [20] G. L. G. SLEIJPEN, Convolution measure algebras on semigroups, Thesis, Catholic University, Nijmegen (1976).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.