The order structure of the space of measures with continuous translation

Gérard L. G. Sleijpen

Annales de l'institut Fourier (1982)

  • Volume: 32, Issue: 2, page 67-110
  • ISSN: 0373-0956

Abstract

top
Let G be a locally compact group, and let B be a function norm on L 1 ( G ) loc such that the space L ( G , B ) of all locally integrable functions with finite B -norm is an invariant solid Banach function space. Consider the space L RUC ( G , B ) of all functions in L ( G , B ) of which the right translation is a continuous map from G into L ( G , B ) . Characterizations of the case where L RUC ( G , B ) is a Riesz ideal of L ( G , B ) are given in terms of the order-continuity of B on certain subspaces of L ( G ) . Throughout the paper, the discussion is carried out in the context of and all the results are formulated for foundation semigroups with identity element; any locally compact group is an example of such a semigroup.

How to cite

top

Sleijpen, Gérard L. G.. "The order structure of the space of measures with continuous translation." Annales de l'institut Fourier 32.2 (1982): 67-110. <http://eudml.org/doc/74542>.

@article{Sleijpen1982,
abstract = {Let $G$ be a locally compact group, and let $\Vert ~~\Vert ^B_\infty $ be a function norm on $L^1(G)_\{\rm loc\}$ such that the space $L^\infty (G,B)$ of all locally integrable functions with finite $\Vert ~~\Vert ^B_\infty $-norm is an invariant solid Banach function space. Consider the space $L_\{\rm RUC\}(G,B)$ of all functions in $L^\infty (G,B)$ of which the right translation is a continuous map from $G$ into $L^\infty (G,B)$. Characterizations of the case where $L_\{\rm RUC\}(G,B)$ is a Riesz ideal of $L^\infty (G,B)$ are given in terms of the order-continuity of $\Vert ~~\Vert ^B_\infty $ on certain subspaces of $L^\infty (G)$. Throughout the paper, the discussion is carried out in the context of and all the results are formulated for foundation semigroups with identity element; any locally compact group is an example of such a semigroup.},
author = {Sleijpen, Gérard L. G.},
journal = {Annales de l'institut Fourier},
keywords = {Riesz ideal; function spaces with continuous translation},
language = {eng},
number = {2},
pages = {67-110},
publisher = {Association des Annales de l'Institut Fourier},
title = {The order structure of the space of measures with continuous translation},
url = {http://eudml.org/doc/74542},
volume = {32},
year = {1982},
}

TY - JOUR
AU - Sleijpen, Gérard L. G.
TI - The order structure of the space of measures with continuous translation
JO - Annales de l'institut Fourier
PY - 1982
PB - Association des Annales de l'Institut Fourier
VL - 32
IS - 2
SP - 67
EP - 110
AB - Let $G$ be a locally compact group, and let $\Vert ~~\Vert ^B_\infty $ be a function norm on $L^1(G)_{\rm loc}$ such that the space $L^\infty (G,B)$ of all locally integrable functions with finite $\Vert ~~\Vert ^B_\infty $-norm is an invariant solid Banach function space. Consider the space $L_{\rm RUC}(G,B)$ of all functions in $L^\infty (G,B)$ of which the right translation is a continuous map from $G$ into $L^\infty (G,B)$. Characterizations of the case where $L_{\rm RUC}(G,B)$ is a Riesz ideal of $L^\infty (G,B)$ are given in terms of the order-continuity of $\Vert ~~\Vert ^B_\infty $ on certain subspaces of $L^\infty (G)$. Throughout the paper, the discussion is carried out in the context of and all the results are formulated for foundation semigroups with identity element; any locally compact group is an example of such a semigroup.
LA - eng
KW - Riesz ideal; function spaces with continuous translation
UR - http://eudml.org/doc/74542
ER -

References

top
  1. [1] A. C. BAKER and J. W. BAKER, Algebras of measures on a locally compact semigroup II, J. London Math. Soc. (2), 4 (1972), 685-695. Zbl0232.43002MR46 #5928
  2. [2] J.-P. BERTRANDIAS, Unions et intersections d'espaces Lp sur un espace localement compact, Bull. Sc. Math., (2), 101 (1977), 209-247. Zbl0376.46016MR58 #23529
  3. [3] H. A. M. DZINOTYIWEYI and G. L. G. SLEIJPEN, A note on measures on foundation semigroups with weakly compact orbits, Pac. Journal Math. (1), 81 (1979), 61-69. Zbl0423.43001MR80f:43002
  4. [4] D. A. EDWARDS, On translates of L∞-functions, J. London Math. Soc., 36 (1961), 431-432. Zbl0103.33702MR25 #1239
  5. [5] R. E. EDWARDS, E. HEWITT and G. RITTER, Fourier multipliers for certain spaces of functions with compact support, Inventiones Math., 40 (1977), 37-57. Zbl0351.43006MR55 #8696
  6. [6] H. G. FEICHTINGER, On a class of convolution algebras of functions, Ann. Inst. Fourier, Grenoble, 27, 3 (1977), 135-162. Zbl0316.43004MR57 #10358
  7. [7] H. G. FEICHTINGER, Multipliers of Banach spaces of functions on groups, Math. Z., 152 (1976), 47-58. Zbl0324.43005MR55 #982
  8. [8] H. G. FEICHTINGER, A characterization of Wiener's algebra on locally compact groups, Arch. Math., 39 (1977), 136-140. Zbl0363.43003MR57 #7035
  9. [9] D. H. FREMLIN, Topological Riesz-spaces and measure theory, Cambridge Univ. Press, (1974). Zbl0273.46035MR56 #12824
  10. [10] G. G. GOULD, On a class of integration spaces, J. London Math. Soc., 34 (1959), 161-172. Zbl0099.09503MR21 #3756
  11. [11] H. KHARAGHANI, The weaky continuous left translations of measures with applications to invariant means, preprint. 
  12. [12] T.-S. LIU, A. C. M. van ROOIJ and J.-K. WANG, On some group modules related to Wiener's algebra M1, Pac. Journal Math. (2), 55 (1974), 507-520. Zbl0303.43011
  13. [13] H. PORTA, L. A. RUBEL and A. L. SHIELDS, Separability of orbits of functions on locally compact groups, Studia Math., 48 (1973), 89-94. Zbl0238.43003MR49 #1005
  14. [14] H. H. SCHAEFFER, Banach-Lattices and Positive Operators, Springer-Verlag, Berlin Heidelberg New-York, (1974). Zbl0296.47023
  15. [15] G. L. G. SLEIJPEN, Locally compact semigroups and continuous translations of measures, Proc. London Math. Soc., (3), 37 (1978), 75-97. Zbl0371.22004MR58 #17682a
  16. [16] G. L. G. SLEIJPEN, Emaciated sets and measures with continuous translations, Proc. London Math. Soc., (3), 37 (1978), 98-119. Zbl0371.22005MR58 #17682b
  17. [17] G. L. G. SLEIJPEN, L-multipliers for foundation semigroups with identity element, Proc. London Math. Soc., (3), 39 (1979), 299-330. Zbl0371.22003MR80k:43003
  18. [18] G. L. G. SLEIJPEN, The support of the Wiener algebra on stips, Indag. Math., 42 (1980), 61-82. Zbl0432.43001MR81j:43007
  19. [19] G. L. G. SLEIJPEN, Lp-spaces on foundation semigroups with identity element, Report 7906, Mathematical Institute, Catholic University, Nijmegen (1979). Zbl0371.22003
  20. [20] G. L. G. SLEIJPEN, Convolution measure algebras on semigroups, Thesis, Catholic University, Nijmegen (1976). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.