On a class of convolution algebras of functions
Annales de l'institut Fourier (1977)
- Volume: 27, Issue: 3, page 135-162
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] B.A. BARNES, Banach algebras which are ideals in a Banach algebra, Pac. J. Math., 38 (1971), 1-7. Zbl0226.46054MR46 #9738
- [2] P.L. BUTZER-K. SCHERER, Approximationsprozesse und Interpolationsmethoden, Bibl. Inst. Mannheim, 1968. Zbl0177.08501
- [3] Y. DOMAR, Harmonic analysis based on certain commutative Banach algebras, Acta Math., 96 (1956), 1-66. Zbl0071.11302MR17,1228a
- [4] H.G. FEICHTINGER, Some new subalgebras of L1 (G), Indag. Math., 36 (1974), 44-47. Zbl0272.43004MR49 #1006
- [5] E. HILLE, Functional analysis and semigroups, Amer. Math. Soc. Publ., XXXI (1948). Zbl0033.06501MR9,594b
- [6] A. HULANICKI, On the spectrum of convolution operators on groups of polynomial growth, Invent. math., 17 (1972), 135-142. Zbl0264.43007MR48 #2304
- [7] H. REITER, Classical harmonic analysis and locally compact groups, Oxford University Press, 1968. Zbl0165.15601MR46 #5933
- [8] R. SPECTOR, Sur la structure locale des groupes abéliens localement compacts, Bull. Soc. Math. France, Mémoire 24 (1970). Zbl0215.18603MR44 #729
- [9] H. CH. WANG, Nonfactorization in group algebras, Studia math., 42 (1972), 231-241. Zbl0273.43008MR46 #2355
- [10] L.H. BRANDENBURG, On identifying the maximal ideals in Banach algebras, J. Math. Anal. Appl., 50 (1975), 489-510. Zbl0302.46042MR51 #13695
- [11] I.I. HIRSCHMANN, Finite sections of Wiener-Hopf equations and Szegö polynomials, J. Math. Anal. Appl., 11 (1965), 290-320. Zbl0173.42601MR31 #6133