A -minimal model for principal -bundles
Annales de l'institut Fourier (1982)
- Volume: 32, Issue: 4, page 205-219
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKumar, Shrawan. "A $G$-minimal model for principal $G$-bundles." Annales de l'institut Fourier 32.4 (1982): 205-219. <http://eudml.org/doc/74561>.
@article{Kumar1982,
abstract = {Sullivan associated a uniquely determined $DGA\big |_\{\bf Q\}$ to any simply connected simplicial complex $E$. This algebra (called minimal model) contains the total (and exactly) rational homotopy information of the space $E$. In case $E$ is the total space of a principal $G$-bundle, ($G$ is a compact connected Lie-group) we associate a $G$-equivariant model $U_G[E]$, which is a collection of “$G$-homotopic” $DGA$’s$\big |_\{\bf R\}$ with $G$-action. $U_G[E]$ will, in general, be different from the Sullivan’s minimal model of the space $E$. $U_G[E]$ contains the total rational homotopy information of the spaces $E$, $E/G$ and, in addition, it incorporates the action of $G$ (on $E$).},
author = {Kumar, Shrawan},
journal = {Annales de l'institut Fourier},
keywords = {total space of a principal G-bundle; compact connected Lie-group; G-equivariant minimal models; equivariant rational homotopy theory},
language = {eng},
number = {4},
pages = {205-219},
publisher = {Association des Annales de l'Institut Fourier},
title = {A $G$-minimal model for principal $G$-bundles},
url = {http://eudml.org/doc/74561},
volume = {32},
year = {1982},
}
TY - JOUR
AU - Kumar, Shrawan
TI - A $G$-minimal model for principal $G$-bundles
JO - Annales de l'institut Fourier
PY - 1982
PB - Association des Annales de l'Institut Fourier
VL - 32
IS - 4
SP - 205
EP - 219
AB - Sullivan associated a uniquely determined $DGA\big |_{\bf Q}$ to any simply connected simplicial complex $E$. This algebra (called minimal model) contains the total (and exactly) rational homotopy information of the space $E$. In case $E$ is the total space of a principal $G$-bundle, ($G$ is a compact connected Lie-group) we associate a $G$-equivariant model $U_G[E]$, which is a collection of “$G$-homotopic” $DGA$’s$\big |_{\bf R}$ with $G$-action. $U_G[E]$ will, in general, be different from the Sullivan’s minimal model of the space $E$. $U_G[E]$ contains the total rational homotopy information of the spaces $E$, $E/G$ and, in addition, it incorporates the action of $G$ (on $E$).
LA - eng
KW - total space of a principal G-bundle; compact connected Lie-group; G-equivariant minimal models; equivariant rational homotopy theory
UR - http://eudml.org/doc/74561
ER -
References
top- [1] H. CARTAN, (a) Notions d'algèbre différentielle ; application aux groupes de Lie et aux variétés où opère un groupe de Lie, Colloque de topologie (Espaces Fibres), Bruxelles (1950), 15-27. Zbl0045.30601MR13,107e
- H. CARTAN, (b) Les connexions infinitésimales dans un espace fibré différentiable, Id, 29-55.
- [2] S. S. CHERN and J. SIMONS, Characteristic forms and geometric invariants, Annales of Mathematics, 99 (1974), 48-69. Zbl0283.53036MR50 #5811
- [3] P. DELIGNE, P. GRIFFITHS, J. MOREGAN and D. SULLIVAN, Real homotopy theory of Kähler manifolds, Inventiones Math., 29 (1975), 245-274. Zbl0312.55011
- [4] E. FRIEDLANDER, P. A. GRIFFITHS and J. MORGAN, Homotopy theory and differential forms, Seminario di Geometria, (1972).
- [5] G. HOCHSCHILD and J. P. SERRE, Cohomology of Lie algebras, Annals of Mathematics, 57 (1953), 591-603. Zbl0053.01402MR14,943c
- [6] B. KOSTANT, Lie group representations on polynomial rings, American journal of Mathematics, 85 (1963), 327-404. Zbl0124.26802MR28 #1252
- [7] D. SULLIVAN, Differential forms and the topology of Manifolds, Proceedings of the International Conference on Manifolds, Tokyo, (1973), 37-49. Zbl0319.58005MR51 #6838
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.