Displaying similar documents to “A G -minimal model for principal G -bundles”

The generic dimension of the first derived system

Robert P. Buemi (1978)

Annales de l'institut Fourier

Similarity:

Any r -dimensional subbundle of the cotangent bundle on an n -dimensional manifold M partitions M into subsets M 0 , ... , M m ( m being the minimum of r and C ( n - r , 2 ) , the combinations of n - r things taken 2 at a time). M i is the set on which the first derived systems of the subbundle has codimension i . In this paper we prove the following: Theorem. Let s 2 and let Q be a generic C s r -dimensional subbundle of the cotangent bundle of an n -dimensional manifold M . The codimension...

Parametrized Borsuk-Ulam problem for projective space bundles

Mahender Singh (2011)

Fundamenta Mathematicae

Similarity:

Let π: E → B be a fiber bundle with fiber having the mod 2 cohomology algebra of a real or a complex projective space and let π’: E’ → B be a vector bundle such that ℤ₂ acts fiber preserving and freely on E and E’-0, where 0 stands for the zero section of the bundle π’: E’ → B. For a fiber preserving ℤ₂-equivariant map f: E → E’, we estimate the cohomological dimension of the zero set Z f = x E | f ( x ) = 0 . As an application, we also estimate the cohomological dimension of the ℤ₂-coincidence set A f = x E | f ( x ) = f ( T ( x ) ) of a...

Gauge natural constructions on higher order principal prolongations

Miroslav Doupovec, Włodzimierz M. Mikulski (2007)

Annales Polonici Mathematici

Similarity:

Let W m r P be a principal prolongation of a principal bundle P → M. We classify all gauge natural operators transforming principal connections on P → M and rth order linear connections on M into general connections on W m r P M . We also describe all geometric constructions of classical linear connections on W m r P from principal connections on P → M and rth order linear connections on M.

Linear liftings of affinors to Weil bundles

Jacek Dębecki (2003)

Colloquium Mathematicae

Similarity:

We give a classification of all linear natural operators transforming affinors on each n-dimensional manifold M into affinors on T A M , where T A is the product preserving bundle functor given by a Weil algebra A, under the condition that n ≥ 2.

Lifts of Foliated Linear Connectionsto the Second Order Transverse Bundles

Vadim V. Shurygin, Svetlana K. Zubkova (2016)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

The second order transverse bundle T 2 M of a foliated manifold M carries a natural structure of a smooth manifold over the algebra 𝔻 2 of truncated polynomials of degree two in one variable. Prolongations of foliated mappings to second order transverse bundles are a partial case of more general 𝔻 2 -smooth foliated mappings between second order transverse bundles. We establish necessary and sufficient conditions under which a 𝔻 2 -smooth foliated diffeomorphism between two second order transverse...

The natural operators lifting horizontal 1-forms to some vector bundle functors on fibered manifolds

J. Kurek, W. M. Mikulski (2003)

Colloquium Mathematicae

Similarity:

Let F:ℱ ℳ → ℬ be a vector bundle functor. First we classify all natural operators T p r o j | m , n T ( 0 , 0 ) ( F | m , n ) * transforming projectable vector fields on Y to functions on the dual bundle (FY)* for any m , n -object Y. Next, under some assumption on F we study natural operators T * h o r | m , n T * ( F | m , n ) * lifting horizontal 1-forms on Y to 1-forms on (FY)* for any Y as above. As an application we classify natural operators T * h o r | m , n T * ( F | m , n ) * for some vector bundle functors F on fibered manifolds.

On the space of maps inducing isomorphic connections

T. R. Ramadas (1982)

Annales de l'institut Fourier

Similarity:

Let ω be the universal connection on the bundle E U ( n ) B U ( n ) . Given a principal U ( n ) -bundle P M with connection A , we determine the homotopy type of the space of maps ϕ of M into B U ( n ) such that ( ϕ + E U ( n ) , ϕ + ω ) is isomorphic to ( P , A ) . Here ϕ + denotes pull-back.

Non-existence of some canonical constructions on connections

Włodzimierz M. Mikulski (2003)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

For a vector bundle functor H : f 𝒱 with the point property we prove that H is product preserving if and only if for any m and n there is an m , n -natural operator D transforming connections Γ on ( m , n ) -dimensional fibered manifolds p : Y M into connections D ( Γ ) on H p : H Y H M . For a bundle functor E : m , n with some weak conditions we prove non-existence of m , n -natural operators D transforming connections Γ on ( m , n ) -dimensional fibered manifolds Y M into connections D ( Γ ) on E Y M .

The natural operators lifting 1-forms to some vector bundle functors

J. Kurek, W. M. Mikulski (2002)

Colloquium Mathematicae

Similarity:

Let F:ℳ f→ ℬ be a vector bundle functor. First we classify all natural operators T | f T ( 0 , 0 ) ( F | f ) * transforming vector fields to functions on the dual bundle functor ( F | f ) * . Next, we study the natural operators T * | f T * ( F | f ) * lifting 1-forms to ( F | f ) * . As an application we classify the natural operators T * | f T * ( F | f ) * for some well known vector bundle functors F.

Line bundles with partially vanishing cohomology

Burt Totaro (2013)

Journal of the European Mathematical Society

Similarity:

Define a line bundle L on a projective variety to be q -ample, for a natural number q , if tensoring with high powers of L kills coherent sheaf cohomology above dimension q . Thus 0-ampleness is the usual notion of ampleness. We show that q -ampleness of a line bundle on a projective variety in characteristic zero is equivalent to the vanishing of an explicit finite list of cohomology groups. It follows that q -ampleness is a Zariski open condition, which is not clear from the definition. ...

Natural maps depending on reductions of frame bundles

Ivan Kolář (2011)

Annales Polonici Mathematici

Similarity:

We clarify how the natural transformations of fiber product preserving bundle functors on m can be constructed by using reductions of the rth order frame bundle of the base, m being the category of fibered manifolds with m-dimensional bases and fiber preserving maps with local diffeomorphisms as base maps. The iteration of two general r-jet functors is discussed in detail.

On Lusternik-Schnirelmann category of SO(10)

Norio Iwase, Toshiyuki Miyauchi (2016)

Fundamenta Mathematicae

Similarity:

Let G be a compact connected Lie group and p: E → ΣA be a principal G-bundle with a characteristic map α: A → G, where A = ΣA₀ for some A₀. Let K i F i - 1 F i | 1 i m with F₀ = ∗, F₁ = ΣK₁ and Fₘ ≃ G be a cone-decomposition of G of length m and F’₁ = ΣK’₁ ⊂ F₁ with K’₁ ⊂ K₁ which satisfy F i F ' F i + 1 up to homotopy for all i. Then cat(E) ≤ m + 1, under suitable conditions, which is used to determine cat(SO(10)). A similar result was obtained by Kono and the first author (2007) to determine cat(Spin(9)), but that result...