Stochastic harmonic morphisms : functions mapping the paths of one diffusion into the paths of another

Bernt Oksendal; L. Csink

Annales de l'institut Fourier (1983)

  • Volume: 33, Issue: 2, page 219-240
  • ISSN: 0373-0956

Abstract

top
We give several necessary and sufficient conditions that a function φ maps the paths of one diffusion into the paths of another. One of these conditions is that φ is a harmonic morphism between the associated harmonic spaces. Another condition constitutes an extension of a result of P. Lévy about conformal invariance of Brownian motion. The third condition implies that two diffusions with the same hitting distributions differ only by a chance of time scale. We also obtain a converse of the above theorem of Lévy.

How to cite

top

Oksendal, Bernt, and Csink, L.. "Stochastic harmonic morphisms : functions mapping the paths of one diffusion into the paths of another." Annales de l'institut Fourier 33.2 (1983): 219-240. <http://eudml.org/doc/74587>.

@article{Oksendal1983,
abstract = {We give several necessary and sufficient conditions that a function $\varphi $ maps the paths of one diffusion into the paths of another. One of these conditions is that $\varphi $ is a harmonic morphism between the associated harmonic spaces. Another condition constitutes an extension of a result of P. Lévy about conformal invariance of Brownian motion. The third condition implies that two diffusions with the same hitting distributions differ only by a chance of time scale. We also obtain a converse of the above theorem of Lévy.},
author = {Oksendal, Bernt, Csink, L.},
journal = {Annales de l'institut Fourier},
keywords = {harmonic spaces; conformal invariance of Brownian motion; hitting distributions},
language = {eng},
number = {2},
pages = {219-240},
publisher = {Association des Annales de l'Institut Fourier},
title = {Stochastic harmonic morphisms : functions mapping the paths of one diffusion into the paths of another},
url = {http://eudml.org/doc/74587},
volume = {33},
year = {1983},
}

TY - JOUR
AU - Oksendal, Bernt
AU - Csink, L.
TI - Stochastic harmonic morphisms : functions mapping the paths of one diffusion into the paths of another
JO - Annales de l'institut Fourier
PY - 1983
PB - Association des Annales de l'Institut Fourier
VL - 33
IS - 2
SP - 219
EP - 240
AB - We give several necessary and sufficient conditions that a function $\varphi $ maps the paths of one diffusion into the paths of another. One of these conditions is that $\varphi $ is a harmonic morphism between the associated harmonic spaces. Another condition constitutes an extension of a result of P. Lévy about conformal invariance of Brownian motion. The third condition implies that two diffusions with the same hitting distributions differ only by a chance of time scale. We also obtain a converse of the above theorem of Lévy.
LA - eng
KW - harmonic spaces; conformal invariance of Brownian motion; hitting distributions
UR - http://eudml.org/doc/74587
ER -

References

top
  1. [1] A. BERNARD, E. A. CAMPBELL and A. M. DAVIE, Brownian motion and generalized analytic and inner functions, Ann. Inst. Fourier, 29-1 (1979), 207-228. Zbl0386.30029MR81b:30088
  2. [2] H. M. BLUMENTHAL and R. K. GETOOR, Markov Processes and Potential Theory, Academic Press, 1968. Zbl0169.49204
  3. [3] H. M. BLUMENTHAL, R. K. GETOOR and H. P. McKEAN Jr., Markov processes with identical hitting distributions, Illinois Journal of Math., 6 (1962), 402-420. Zbl0133.40903MR25 #5550
  4. [4] H. M. BLUMENTHAL, R. K. GETOOR and H. P. MCKEAN Jr., A supplement to "Markov processes with identical hitting distributions", Illinois Journal of Math., 7 (1963), 540-542. Zbl0211.48602MR27 #3018
  5. [5] C. CONSTANTINESCU and A. CORNEA, Compactifications of harmonic spaces, Nagoya Math. J., 25 (1965), 1-57. Zbl0138.36701MR30 #4960
  6. [6] C. CONSTANTINESCU and A. CORNEA, Potential Theory on Harmonic Spaces, Springer-Verlag, 1972. Zbl0248.31011MR54 #7817
  7. [7] R. W. DARLING, Thesis, University of Warwick, 1982. 
  8. [8] B. DAVIS, Brownian motion and analytic functions, The Annals of Probability, 7 (1979), 913-932. Zbl0421.60072MR80j:30001
  9. [9] E. B. DYNKIN, Markov Processes I, Springer-Verlag, 1965. Zbl0132.37901
  10. [10] E. B. DYNKIN, Markov Processes II, Springer-Verlag, 1965. Zbl0132.37901
  11. [11] B. FUGLEDE, Harmonic morphisms between Riemannian manifolds, Ann. Inst. Fourier, 28-2 (1978), 107-144. Zbl0339.53026MR80h:58023
  12. [12] B. FUGLEDE, Harmonic morphisms, In Proc. Coll. on Complex Analysis, Springer Lecture Notes in Math., 747 (1979). Zbl0414.53033MR81b:31001
  13. [13] T. ISHIHARA, A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto Univ., 19-2 (1979), 215-229. Zbl0421.31006MR80k:58045
  14. [14] H. P. MCKEAN, Stochastic Integrals, Academic Press, 1969. Zbl0191.46603MR40 #947
  15. [15] P. A. MEYER, Géométrie stochastique sans larmes. Sem. de Probabilités XV, Springer Lecture Notes in Math., 850, Springer-Verlag, 1981. Zbl0459.60046
  16. [16] B. ØKSENDAL and D. W. STROOCK, A characterization of harmonic measure and Markov processes whose hitting distributions are preserved by rotations, translations and dilatations, Ann. Inst. Fourier, 32-4 (1982). Zbl0489.60078MR84g:60125
  17. [17] D. SIBONY, Allure à la frontière minimale d'une classe de transformations. Théorème de Doob généralisé, Ann. Inst. Fourier, 18 (1968), 91-120. Zbl0182.15002MR40 #395
  18. [18] D. W. STROOCK and S. R. S. VARADHAN, Multidimensional Diffusion Processes, Springer-Verlag, 1979. Zbl0426.60069MR81f:60108

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.