Stochastic harmonic morphisms : functions mapping the paths of one diffusion into the paths of another

Bernt Oksendal; L. Csink

Annales de l'institut Fourier (1983)

  • Volume: 33, Issue: 2, page 219-240
  • ISSN: 0373-0956

Abstract

top
We give several necessary and sufficient conditions that a function φ maps the paths of one diffusion into the paths of another. One of these conditions is that φ is a harmonic morphism between the associated harmonic spaces. Another condition constitutes an extension of a result of P. Lévy about conformal invariance of Brownian motion. The third condition implies that two diffusions with the same hitting distributions differ only by a chance of time scale. We also obtain a converse of the above theorem of Lévy.

How to cite

top

Oksendal, Bernt, and Csink, L.. "Stochastic harmonic morphisms : functions mapping the paths of one diffusion into the paths of another." Annales de l'institut Fourier 33.2 (1983): 219-240. <http://eudml.org/doc/74587>.

@article{Oksendal1983,
abstract = {We give several necessary and sufficient conditions that a function $\varphi $ maps the paths of one diffusion into the paths of another. One of these conditions is that $\varphi $ is a harmonic morphism between the associated harmonic spaces. Another condition constitutes an extension of a result of P. Lévy about conformal invariance of Brownian motion. The third condition implies that two diffusions with the same hitting distributions differ only by a chance of time scale. We also obtain a converse of the above theorem of Lévy.},
author = {Oksendal, Bernt, Csink, L.},
journal = {Annales de l'institut Fourier},
keywords = {harmonic spaces; conformal invariance of Brownian motion; hitting distributions},
language = {eng},
number = {2},
pages = {219-240},
publisher = {Association des Annales de l'Institut Fourier},
title = {Stochastic harmonic morphisms : functions mapping the paths of one diffusion into the paths of another},
url = {http://eudml.org/doc/74587},
volume = {33},
year = {1983},
}

TY - JOUR
AU - Oksendal, Bernt
AU - Csink, L.
TI - Stochastic harmonic morphisms : functions mapping the paths of one diffusion into the paths of another
JO - Annales de l'institut Fourier
PY - 1983
PB - Association des Annales de l'Institut Fourier
VL - 33
IS - 2
SP - 219
EP - 240
AB - We give several necessary and sufficient conditions that a function $\varphi $ maps the paths of one diffusion into the paths of another. One of these conditions is that $\varphi $ is a harmonic morphism between the associated harmonic spaces. Another condition constitutes an extension of a result of P. Lévy about conformal invariance of Brownian motion. The third condition implies that two diffusions with the same hitting distributions differ only by a chance of time scale. We also obtain a converse of the above theorem of Lévy.
LA - eng
KW - harmonic spaces; conformal invariance of Brownian motion; hitting distributions
UR - http://eudml.org/doc/74587
ER -

References

top
  1. [1] A. BERNARD, E. A. CAMPBELL and A. M. DAVIE, Brownian motion and generalized analytic and inner functions, Ann. Inst. Fourier, 29-1 (1979), 207-228. Zbl0386.30029MR81b:30088
  2. [2] H. M. BLUMENTHAL and R. K. GETOOR, Markov Processes and Potential Theory, Academic Press, 1968. Zbl0169.49204
  3. [3] H. M. BLUMENTHAL, R. K. GETOOR and H. P. McKEAN Jr., Markov processes with identical hitting distributions, Illinois Journal of Math., 6 (1962), 402-420. Zbl0133.40903MR25 #5550
  4. [4] H. M. BLUMENTHAL, R. K. GETOOR and H. P. MCKEAN Jr., A supplement to "Markov processes with identical hitting distributions", Illinois Journal of Math., 7 (1963), 540-542. Zbl0211.48602MR27 #3018
  5. [5] C. CONSTANTINESCU and A. CORNEA, Compactifications of harmonic spaces, Nagoya Math. J., 25 (1965), 1-57. Zbl0138.36701MR30 #4960
  6. [6] C. CONSTANTINESCU and A. CORNEA, Potential Theory on Harmonic Spaces, Springer-Verlag, 1972. Zbl0248.31011MR54 #7817
  7. [7] R. W. DARLING, Thesis, University of Warwick, 1982. 
  8. [8] B. DAVIS, Brownian motion and analytic functions, The Annals of Probability, 7 (1979), 913-932. Zbl0421.60072MR80j:30001
  9. [9] E. B. DYNKIN, Markov Processes I, Springer-Verlag, 1965. Zbl0132.37901
  10. [10] E. B. DYNKIN, Markov Processes II, Springer-Verlag, 1965. Zbl0132.37901
  11. [11] B. FUGLEDE, Harmonic morphisms between Riemannian manifolds, Ann. Inst. Fourier, 28-2 (1978), 107-144. Zbl0339.53026MR80h:58023
  12. [12] B. FUGLEDE, Harmonic morphisms, In Proc. Coll. on Complex Analysis, Springer Lecture Notes in Math., 747 (1979). Zbl0414.53033MR81b:31001
  13. [13] T. ISHIHARA, A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto Univ., 19-2 (1979), 215-229. Zbl0421.31006MR80k:58045
  14. [14] H. P. MCKEAN, Stochastic Integrals, Academic Press, 1969. Zbl0191.46603MR40 #947
  15. [15] P. A. MEYER, Géométrie stochastique sans larmes. Sem. de Probabilités XV, Springer Lecture Notes in Math., 850, Springer-Verlag, 1981. Zbl0459.60046
  16. [16] B. ØKSENDAL and D. W. STROOCK, A characterization of harmonic measure and Markov processes whose hitting distributions are preserved by rotations, translations and dilatations, Ann. Inst. Fourier, 32-4 (1982). Zbl0489.60078MR84g:60125
  17. [17] D. SIBONY, Allure à la frontière minimale d'une classe de transformations. Théorème de Doob généralisé, Ann. Inst. Fourier, 18 (1968), 91-120. Zbl0182.15002MR40 #395
  18. [18] D. W. STROOCK and S. R. S. VARADHAN, Multidimensional Diffusion Processes, Springer-Verlag, 1979. Zbl0426.60069MR81f:60108

NotesEmbed ?

top

You must be logged in to post comments.