Biharmonic morphisms

Mustapha Chadli; Mohamed El Kadiri; Sabah Haddad

Commentationes Mathematicae Universitatis Carolinae (2005)

  • Volume: 46, Issue: 1, page 145-159
  • ISSN: 0010-2628

Abstract

top
Let ( X , ) and ( X ' , ' ) be two strong biharmonic spaces in the sense of Smyrnelis whose associated harmonic spaces are Brelot spaces. A biharmonic morphism from ( X , ) to ( X ' , ' ) is a continuous map from X to X ' which preserves the biharmonic structures of X and X ' . In the present work we study this notion and characterize in some cases the biharmonic morphisms between X and X ' in terms of harmonic morphisms between the harmonic spaces associated with ( X , ) and ( X ' , ' ) and the coupling kernels of them.

How to cite

top

Chadli, Mustapha, El Kadiri, Mohamed, and Haddad, Sabah. "Biharmonic morphisms." Commentationes Mathematicae Universitatis Carolinae 46.1 (2005): 145-159. <http://eudml.org/doc/249547>.

@article{Chadli2005,
abstract = {Let $(X, \mathcal \{H\})$ and $(X^\{\prime \},\mathcal \{H\}^\{\prime \})$ be two strong biharmonic spaces in the sense of Smyrnelis whose associated harmonic spaces are Brelot spaces. A biharmonic morphism from $(X,\mathcal \{H\})$ to $(X^\{\prime \},\mathcal \{H\}^\{\prime \})$ is a continuous map from $X$ to $X^\{\prime \}$ which preserves the biharmonic structures of $X$ and $X^\{\prime \}$. In the present work we study this notion and characterize in some cases the biharmonic morphisms between $X$ and $X^\{\prime \}$ in terms of harmonic morphisms between the harmonic spaces associated with $(X,\mathcal \{H\})$ and $(X^\{\prime \},\mathcal \{H\}^\{\prime \})$ and the coupling kernels of them.},
author = {Chadli, Mustapha, El Kadiri, Mohamed, Haddad, Sabah},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {harmonic space; harmonic morphism; biharmonic space; biharmonic function; biharmonic morphism; biharmonic space; biharmonic function; harmonic space; harmonic function},
language = {eng},
number = {1},
pages = {145-159},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Biharmonic morphisms},
url = {http://eudml.org/doc/249547},
volume = {46},
year = {2005},
}

TY - JOUR
AU - Chadli, Mustapha
AU - El Kadiri, Mohamed
AU - Haddad, Sabah
TI - Biharmonic morphisms
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2005
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 46
IS - 1
SP - 145
EP - 159
AB - Let $(X, \mathcal {H})$ and $(X^{\prime },\mathcal {H}^{\prime })$ be two strong biharmonic spaces in the sense of Smyrnelis whose associated harmonic spaces are Brelot spaces. A biharmonic morphism from $(X,\mathcal {H})$ to $(X^{\prime },\mathcal {H}^{\prime })$ is a continuous map from $X$ to $X^{\prime }$ which preserves the biharmonic structures of $X$ and $X^{\prime }$. In the present work we study this notion and characterize in some cases the biharmonic morphisms between $X$ and $X^{\prime }$ in terms of harmonic morphisms between the harmonic spaces associated with $(X,\mathcal {H})$ and $(X^{\prime },\mathcal {H}^{\prime })$ and the coupling kernels of them.
LA - eng
KW - harmonic space; harmonic morphism; biharmonic space; biharmonic function; biharmonic morphism; biharmonic space; biharmonic function; harmonic space; harmonic function
UR - http://eudml.org/doc/249547
ER -

References

top
  1. Bouleau N., Espaces biharmoniques et couplages de processus de Markov, J. Math. Pures Appl. 58 (1979), 187-204. (1979) MR0581988
  2. Bouleau N., Thèse de Doctorat d'Etat ès Sciences, Université de Paris VI, 1979. 
  3. Constantinescu C., Cornea A., Compactifications of harmonic spaces, Nagoya Math. J. 25 (1965), 1-57. (1965) Zbl0138.36701MR0174760
  4. Constantinescu C., Cornea A., Potential Theory on Harmonic Spaces, Springer, Heidelberg, 1972. Zbl0248.31011MR0419799
  5. Csink L., Fitzsimmons P.J., Øksendal B., A stochastic characterization of harmonic morphisms, Math. Ann. 287 (1990), 1 1-18. (1990) MR1048277
  6. Csink L., Øksendal B., Stochastic harmonic morphisms: Functions mapping the paths of one diffusion into the paths of another, Ann. Inst. Fourier 33 (1983), 219-240. (1983) MR0699496
  7. Dellacherie C., Meyer P.A., Probabilités et Potentiel, Chapter I à IV, Hermann, Paris, 1975. Zbl0624.60084MR0488194
  8. El Kadiri M., Représentation intégrale dans le cadre de la théorie axiomatique des fonctions biharmoniques, Rev. Roumaine Math. Pures Appl. 42 (1997), 579-589. (1997) MR1650389
  9. Fuglede B., Harmonic morphisms between Riemannian manifolds, Ann. Inst. Fourier 28 (1978), 107-144. (1978) Zbl0408.31011MR0499588
  10. Fuglede B., Harmonic morphisms, Complex Analysis, Joensuu 1978, Proceedings (Eds. I. Laire, O. Lehto, T. Sorvali), Lecture Notes in Math. 747, Springer, Berlin, 1979, pp.123-132. Zbl0948.53036MR0553035
  11. Helms L.L., Introduction to Potential Theory, Wiley-Interscience, 1969. Zbl0188.17203MR0261018
  12. Hervé R.M., Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Ann. Inst. Fourier 12 (1962), 415-517. (1962) MR0139756
  13. Nicolescu M., Les fonctions polyharmoniques, Hermann, Paris, 1936. 
  14. Smyrnelis E.P., Axiomatique des fonctions biharmoniques, I, Ann. Inst. Fourier 25 1 (1975), 35-97. (1975) Zbl0295.31006MR0382691
  15. Smyrnelis E.P., Axiomatique des fonctions biharmoniques, II, Ann. Inst. Fourier 26 3 (1976), 1-47. (1976) MR0477101
  16. Smyrnelis E.P., Sur les fonctions hyperharmoniques d’ordre 2 , Lecture Notes in Math. 681, Springer, Berlin, 1978, pp.277-294. Zbl0393.31004MR0521791

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.