Biharmonic morphisms
Mustapha Chadli; Mohamed El Kadiri; Sabah Haddad
Commentationes Mathematicae Universitatis Carolinae (2005)
- Volume: 46, Issue: 1, page 145-159
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topChadli, Mustapha, El Kadiri, Mohamed, and Haddad, Sabah. "Biharmonic morphisms." Commentationes Mathematicae Universitatis Carolinae 46.1 (2005): 145-159. <http://eudml.org/doc/249547>.
@article{Chadli2005,
abstract = {Let $(X, \mathcal \{H\})$ and $(X^\{\prime \},\mathcal \{H\}^\{\prime \})$ be two strong biharmonic spaces in the sense of Smyrnelis whose associated harmonic spaces are Brelot spaces. A biharmonic morphism from $(X,\mathcal \{H\})$ to $(X^\{\prime \},\mathcal \{H\}^\{\prime \})$ is a continuous map from $X$ to $X^\{\prime \}$ which preserves the biharmonic structures of $X$ and $X^\{\prime \}$. In the present work we study this notion and characterize in some cases the biharmonic morphisms between $X$ and $X^\{\prime \}$ in terms of harmonic morphisms between the harmonic spaces associated with $(X,\mathcal \{H\})$ and $(X^\{\prime \},\mathcal \{H\}^\{\prime \})$ and the coupling kernels of them.},
author = {Chadli, Mustapha, El Kadiri, Mohamed, Haddad, Sabah},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {harmonic space; harmonic morphism; biharmonic space; biharmonic function; biharmonic morphism; biharmonic space; biharmonic function; harmonic space; harmonic function},
language = {eng},
number = {1},
pages = {145-159},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Biharmonic morphisms},
url = {http://eudml.org/doc/249547},
volume = {46},
year = {2005},
}
TY - JOUR
AU - Chadli, Mustapha
AU - El Kadiri, Mohamed
AU - Haddad, Sabah
TI - Biharmonic morphisms
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2005
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 46
IS - 1
SP - 145
EP - 159
AB - Let $(X, \mathcal {H})$ and $(X^{\prime },\mathcal {H}^{\prime })$ be two strong biharmonic spaces in the sense of Smyrnelis whose associated harmonic spaces are Brelot spaces. A biharmonic morphism from $(X,\mathcal {H})$ to $(X^{\prime },\mathcal {H}^{\prime })$ is a continuous map from $X$ to $X^{\prime }$ which preserves the biharmonic structures of $X$ and $X^{\prime }$. In the present work we study this notion and characterize in some cases the biharmonic morphisms between $X$ and $X^{\prime }$ in terms of harmonic morphisms between the harmonic spaces associated with $(X,\mathcal {H})$ and $(X^{\prime },\mathcal {H}^{\prime })$ and the coupling kernels of them.
LA - eng
KW - harmonic space; harmonic morphism; biharmonic space; biharmonic function; biharmonic morphism; biharmonic space; biharmonic function; harmonic space; harmonic function
UR - http://eudml.org/doc/249547
ER -
References
top- Bouleau N., Espaces biharmoniques et couplages de processus de Markov, J. Math. Pures Appl. 58 (1979), 187-204. (1979) MR0581988
- Bouleau N., Thèse de Doctorat d'Etat ès Sciences, Université de Paris VI, 1979.
- Constantinescu C., Cornea A., Compactifications of harmonic spaces, Nagoya Math. J. 25 (1965), 1-57. (1965) Zbl0138.36701MR0174760
- Constantinescu C., Cornea A., Potential Theory on Harmonic Spaces, Springer, Heidelberg, 1972. Zbl0248.31011MR0419799
- Csink L., Fitzsimmons P.J., Øksendal B., A stochastic characterization of harmonic morphisms, Math. Ann. 287 (1990), 1 1-18. (1990) MR1048277
- Csink L., Øksendal B., Stochastic harmonic morphisms: Functions mapping the paths of one diffusion into the paths of another, Ann. Inst. Fourier 33 (1983), 219-240. (1983) MR0699496
- Dellacherie C., Meyer P.A., Probabilités et Potentiel, Chapter I à IV, Hermann, Paris, 1975. Zbl0624.60084MR0488194
- El Kadiri M., Représentation intégrale dans le cadre de la théorie axiomatique des fonctions biharmoniques, Rev. Roumaine Math. Pures Appl. 42 (1997), 579-589. (1997) MR1650389
- Fuglede B., Harmonic morphisms between Riemannian manifolds, Ann. Inst. Fourier 28 (1978), 107-144. (1978) Zbl0408.31011MR0499588
- Fuglede B., Harmonic morphisms, Complex Analysis, Joensuu 1978, Proceedings (Eds. I. Laire, O. Lehto, T. Sorvali), Lecture Notes in Math. 747, Springer, Berlin, 1979, pp.123-132. Zbl0948.53036MR0553035
- Helms L.L., Introduction to Potential Theory, Wiley-Interscience, 1969. Zbl0188.17203MR0261018
- Hervé R.M., Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Ann. Inst. Fourier 12 (1962), 415-517. (1962) MR0139756
- Nicolescu M., Les fonctions polyharmoniques, Hermann, Paris, 1936.
- Smyrnelis E.P., Axiomatique des fonctions biharmoniques, I, Ann. Inst. Fourier 25 1 (1975), 35-97. (1975) Zbl0295.31006MR0382691
- Smyrnelis E.P., Axiomatique des fonctions biharmoniques, II, Ann. Inst. Fourier 26 3 (1976), 1-47. (1976) MR0477101
- Smyrnelis E.P., Sur les fonctions hyperharmoniques d’ordre , Lecture Notes in Math. 681, Springer, Berlin, 1978, pp.277-294. Zbl0393.31004MR0521791
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.