Brownian motion and transient groups

Nicolas Th. Varopoulos

Annales de l'institut Fourier (1983)

  • Volume: 33, Issue: 2, page 241-261
  • ISSN: 0373-0956

Abstract

top
In this paper I consider M ˜ M a covering of a Riemannian manifold M . I prove that Green’s function exists on M ˜ if any and only if the symmetric translation invariant random walks on the covering group G are transient (under the assumption that M is compact).

How to cite

top

Varopoulos, Nicolas Th.. "Brownian motion and transient groups." Annales de l'institut Fourier 33.2 (1983): 241-261. <http://eudml.org/doc/74588>.

@article{Varopoulos1983,
abstract = {In this paper I consider $\widetilde\{M\}\rightarrow M$ a covering of a Riemannian manifold $M$. I prove that Green’s function exists on $\widetilde\{M\}$ if any and only if the symmetric translation invariant random walks on the covering group $G$ are transient (under the assumption that $M$ is compact).},
author = {Varopoulos, Nicolas Th.},
journal = {Annales de l'institut Fourier},
keywords = {translation invariant random walks on covering groups},
language = {eng},
number = {2},
pages = {241-261},
publisher = {Association des Annales de l'Institut Fourier},
title = {Brownian motion and transient groups},
url = {http://eudml.org/doc/74588},
volume = {33},
year = {1983},
}

TY - JOUR
AU - Varopoulos, Nicolas Th.
TI - Brownian motion and transient groups
JO - Annales de l'institut Fourier
PY - 1983
PB - Association des Annales de l'Institut Fourier
VL - 33
IS - 2
SP - 241
EP - 261
AB - In this paper I consider $\widetilde{M}\rightarrow M$ a covering of a Riemannian manifold $M$. I prove that Green’s function exists on $\widetilde{M}$ if any and only if the symmetric translation invariant random walks on the covering group $G$ are transient (under the assumption that $M$ is compact).
LA - eng
KW - translation invariant random walks on covering groups
UR - http://eudml.org/doc/74588
ER -

References

top
  1. [1] H. P. MCKEAN Jr, Stochastic Integrals, Academic Press, 1969. Zbl0191.46603
  2. [2] N. Th. VAROPOULOS, Potential Theory and Diffusion on Riemannian manifolds, Zygmund 80th Birthday Volume, Chicago, 1981. 
  3. [3] D. DACUNHA-CASTELL et al., Springer Verlag Lecture Notes, n° 678. 
  4. [4] Y. GUIVARCH et al., Springer Verlag Lecture Notes, n° 624. 
  5. [5] N. Th. VAROPOULOS, C. R. A. S., (1982), to appear. 
  6. [6] M. GROMOV, Groups of polynomial growth and expanding maps, Publications Math. I.H.E.S., n° 53 (1981). Zbl0474.20018MR83b:53041
  7. [7] H. REITER, Classical Harmonic Analysis and locally compact groups, Oxford Math. Monograph, (1968), O.U.P. Zbl0165.15601MR46 #5933
  8. [8] P. BALDI, N. LOHOUÉ et J. PEYRIÈRE, C. R. A. S., Paris, t. 285 (A), (1977), 1103-1104. Zbl0376.60072
  9. [9] S. Y. CHENG, P. LI and S.-T. YAU, On the upper estimate of the heat kernel of a complete Riemannian manifold, American J. Math., Vol. 103, n° 5 (1981), 1021-1063. Zbl0484.53035MR83c:58083
  10. [10] J. CHEEGER and S. T. YAU, A lower Bound of the heat kernel, Comm. on Pure and Appl. Math., Vol. XXXIV (1981), 465-480. Zbl0481.35003MR82i:58065
  11. [11] J. MILNOR, A note on curvature and fundamental group., J. Diff. Geom., 2 (1968), 1-7. Zbl0162.25401MR38 #636
  12. [12] T. J. LYONS and H. P. MCKEAN, Winding of the plane Brownian motion (preprint). Zbl0541.60075
  13. [13] W. FELLER, An introduction to Probability Theory and its Applications (3rd Edition), Wiley. Zbl0155.23101
  14. [14] R. BROOKS, Amenability and the Spectrum of the Laplacian, Bull. Amer. Math. Soc., Vol. 6, 87-89 (1982), n° 1. Zbl0489.58033MR83f:58076
  15. [15] N. Th. VAROPOULOS, Random walks on soluble Groups, Bull. Sci. Math. (to appear). Zbl0532.60009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.