Brownian motion and random walks on manifolds

Nicolas Th. Varopoulos

Annales de l'institut Fourier (1984)

  • Volume: 34, Issue: 2, page 243-269
  • ISSN: 0373-0956

Abstract

top
We develop a procedure that allows us to “descretise” the Brownian motion on a Riemannian manifold. We construct thus a random walk that is a good approximation of the Brownian motion.

How to cite

top

Varopoulos, Nicolas Th.. "Brownian motion and random walks on manifolds." Annales de l'institut Fourier 34.2 (1984): 243-269. <http://eudml.org/doc/74631>.

@article{Varopoulos1984,
abstract = {We develop a procedure that allows us to “descretise” the Brownian motion on a Riemannian manifold. We construct thus a random walk that is a good approximation of the Brownian motion.},
author = {Varopoulos, Nicolas Th.},
journal = {Annales de l'institut Fourier},
keywords = {Riemannian manifold; approximation of the Brownian motion},
language = {eng},
number = {2},
pages = {243-269},
publisher = {Association des Annales de l'Institut Fourier},
title = {Brownian motion and random walks on manifolds},
url = {http://eudml.org/doc/74631},
volume = {34},
year = {1984},
}

TY - JOUR
AU - Varopoulos, Nicolas Th.
TI - Brownian motion and random walks on manifolds
JO - Annales de l'institut Fourier
PY - 1984
PB - Association des Annales de l'Institut Fourier
VL - 34
IS - 2
SP - 243
EP - 269
AB - We develop a procedure that allows us to “descretise” the Brownian motion on a Riemannian manifold. We construct thus a random walk that is a good approximation of the Brownian motion.
LA - eng
KW - Riemannian manifold; approximation of the Brownian motion
UR - http://eudml.org/doc/74631
ER -

References

top
  1. [1]N. TH. VAROPOULOS, Brownian Motion and Transient Groups, Ann. Inst. Fourier, 33-2 (1983), 241-261. Zbl0498.60012MR84i:58130
  2. [2]H. P. MCKEAN JE., Stochastic Integrals, Academic Press, 1969. Zbl0191.46603
  3. [3]N. TH. VAROPOULOS, Potential Theory and Diffusion on Riemannian Manifolds, Conference on Harmonic analysis in honor of Antoni Zygmund. (Wadsworth). 
  4. [4]T. J. LYONS and H. P. MCKEAN, Winding of the Plane Brownian Motion (preprint). Zbl0541.60075
  5. [5]J. CHEEGER and D. G. EBIN, Comparison Theorems in Riemannian Geometry, North-Holland, 1975. Zbl0309.53035MR56 #16538
  6. [6]J. MILNOR, A Note on Curvature and Fundamental Group, J. Diff. Geometry, 2 (1968), 1-7. Zbl0162.25401MR38 #636
  7. [7]P. BALDI, N. LOHOUÉ et J. PEYRIÈRE, C.R.A.S., Paris, t. 285 (A), 1977, 1103-1104. Zbl0376.60072
  8. [8]S. T. YAU, On the Heat Kernel of a Complete Riemannian Manifold, J. Math. Pure et Appl., 57 (1978), 191-201. Zbl0405.35025MR81b:58041
  9. [9]J. CHEEGER and S. T. YAU, A Lower Bound for the Heat Kernel, Comm. Pure and Appl. Math., vol. XXXIV (1981), 465-480. Zbl0481.35003MR82i:58065
  10. [10]H. DONNELLY and P. LI, Lower Bounds for the Eigen Values of Negatively Curved Manifolds, Math. Z., 172 (1980), 29-40. Zbl0413.58020MR81j:58080
  11. [11]S. Y. CHENG, P. LI, and S. T. YAU, On the Upper Estimate of the Heat Kernel of a Complete Riemannian Manifold, Amer. J. of Math., Vol. 103(5) (1980), 1021-1063. Zbl0484.53035MR83c:58083
  12. [12]L. V. AHLFORS, Conformal Invariants, New-York, McGraw-Hill. Zbl0049.17702
  13. [13]N. TH. VAROPOULOS, Random Walks on Soluble Groups, Bull. Sci. Math., 2e série, 107 (1983), 337-344. Zbl0532.60009MR85e:60076
  14. [14]M. GROMOV, Structures Métriques pour les variétés Riemanniennes, Cedic/Fernand Nathan (1981). Zbl0509.53034MR85e:53051
  15. [15]Y. GUIVARC'H, C.R.A.S., Paris, t. 292 (I) (1981), 851-853. 
  16. [16]J. VAUTHIER, Théorèmes d'annulation, Bull. Sc. math., 2e série, 103 (1979), 129-177. Zbl0419.35044
  17. [17]H. DONNELLY, Spectral geometry, Math Z., 169 (1979), 63-76. Zbl0432.58022
  18. [18]N. TH. VAROPOULOS, C.R.A.S., t. 297 (I), p. 585. Zbl0535.30038

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.