Finitely generated ideals in
John Erik Fornaess; M. Ovrelid
Annales de l'institut Fourier (1983)
- Volume: 33, Issue: 2, page 77-85
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topFornaess, John Erik, and Ovrelid, M.. "Finitely generated ideals in $A(\omega )$." Annales de l'institut Fourier 33.2 (1983): 77-85. <http://eudml.org/doc/74590>.
@article{Fornaess1983,
abstract = {The Gleason problem is solved on real analytic pseudoconvex domains in $\{\bf C\}^2$. In this case the weakly pseudoconvex points can be a two-dimensional subset of the boundary. To reduce the Gleason problem to a $\bar\{\partial \}$ question it is shown that the set of Kohn-Nirenberg points is at most one-dimensional. In fact, except for a one-dimensional subset, the weakly pseudoconvex boundary points are $R$-points as studied by Range and therefore allow local sup-norm estimates for $\bar\{\partial \}$.},
author = {Fornaess, John Erik, Ovrelid, M.},
journal = {Annales de l'institut Fourier},
keywords = {Gleason problem; real analytic pseudoconvex domains; delta problem; weakly pseudoconvex boundary points; stratification},
language = {eng},
number = {2},
pages = {77-85},
publisher = {Association des Annales de l'Institut Fourier},
title = {Finitely generated ideals in $A(\omega )$},
url = {http://eudml.org/doc/74590},
volume = {33},
year = {1983},
}
TY - JOUR
AU - Fornaess, John Erik
AU - Ovrelid, M.
TI - Finitely generated ideals in $A(\omega )$
JO - Annales de l'institut Fourier
PY - 1983
PB - Association des Annales de l'Institut Fourier
VL - 33
IS - 2
SP - 77
EP - 85
AB - The Gleason problem is solved on real analytic pseudoconvex domains in ${\bf C}^2$. In this case the weakly pseudoconvex points can be a two-dimensional subset of the boundary. To reduce the Gleason problem to a $\bar{\partial }$ question it is shown that the set of Kohn-Nirenberg points is at most one-dimensional. In fact, except for a one-dimensional subset, the weakly pseudoconvex boundary points are $R$-points as studied by Range and therefore allow local sup-norm estimates for $\bar{\partial }$.
LA - eng
KW - Gleason problem; real analytic pseudoconvex domains; delta problem; weakly pseudoconvex boundary points; stratification
UR - http://eudml.org/doc/74590
ER -
References
top- [1] F. BEATROUS, Hölder estimates for the Z-equation with a support condition, Pacific J. Math., 90 (1980), 249-257. Zbl0453.32006MR82b:32029
- [2] K. DIEDERICH and J. E. FORNÆSS, Pseudoconvex domains : Existence of Stein neighbourhoods, Duke J. Math., 44 (1977), 641-662. Zbl0381.32014
- [3] J. E. FORNÆSS and A. NAGEL, The Mergelyan property for weakly pseudoconvex domains, Manuscripta Math., 22 (1977), 199-208. Zbl0391.32010MR56 #15983
- [4] A. GLEASON, Finitely generated ideals in Banach algebras, J. Math. Mech., 13 (1964), 125-132. Zbl0117.34105MR28 #2458
- [5] G. M. HENKIN, Approximation of functions in pseudoconvex domains and Leibenzon's theorem, Bull. Acad. Pol. Sci. Ser. Math. Astron. et Phys., 19 (1971), 37-42. Zbl0214.33701
- [6] N. KERZMAN and A. NAGEL, Finitely generated ideals in certain function algebras, J. Funct. Anal., 7 (1971), 212-215. Zbl0211.43902MR43 #929
- [7] J. J. KOHN, Boundary behavior of Z on weakly pseudoconvex manifolds of dimension two, J. Diff. Geom., 6 (1972), 523-542. Zbl0256.35060MR48 #727
- [8] J. J. KOHN and L. NIRENBERG, A pseudoconvex domain not admitting a holomorphic support function, Math. Ann., 201 (1973), 265-268. Zbl0248.32013MR48 #8850
- [9] I. LIEB, Die Cauchy-Riemannschen Differentialgleichung auf streng pseudokonveksen Gebieten : Stetige Randwerte, Math. Ann., 199 (1972), 241-256. Zbl0231.35055MR48 #6468
- [10] S. LOJASIEWICZ, Triangulation of semi-analytic sets, Ann. Scuola Norm. Sup. Pisa, 19 (1965), 449-474. Zbl0128.17101
- [11] M. RANGE, Øn Hölder estimates for Zu = f on weakly pseudoconvex domains, Cortona Proceedings, Cortona, 1976-1977, 247-267. Zbl0421.32021
- [12] N. ØVRELID, Generators of the maximal ideals of A (D), Pac. J. Math., 39 (1971), 219-233. Zbl0231.46090MR46 #9393
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.