Equivalence of differentiable mappings and analytic mappings

Masahiro Shiota

Publications Mathématiques de l'IHÉS (1981)

  • Volume: 54, page 37-122
  • ISSN: 0073-8301

How to cite

top

Shiota, Masahiro. "Equivalence of differentiable mappings and analytic mappings." Publications Mathématiques de l'IHÉS 54 (1981): 37-122. <http://eudml.org/doc/103978>.

@article{Shiota1981,
author = {Shiota, Masahiro},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {equivalence of mappings; polynomial mapping; germ of analytic mapping; isolated topological singularities},
language = {eng},
pages = {37-122},
publisher = {Institut des Hautes Études Scientifiques},
title = {Equivalence of differentiable mappings and analytic mappings},
url = {http://eudml.org/doc/103978},
volume = {54},
year = {1981},
}

TY - JOUR
AU - Shiota, Masahiro
TI - Equivalence of differentiable mappings and analytic mappings
JO - Publications Mathématiques de l'IHÉS
PY - 1981
PB - Institut des Hautes Études Scientifiques
VL - 54
SP - 37
EP - 122
LA - eng
KW - equivalence of mappings; polynomial mapping; germ of analytic mapping; isolated topological singularities
UR - http://eudml.org/doc/103978
ER -

References

top
  1. [1] M. ARTIN, On the solution of analytic equations, Inv. Math., 5 (1968), 277-291. Zbl0172.05301MR38 #344
  2. [2] J. BOCHNAK-S. ŁOJASIEWICZ, A converse of the Kuiper-Kuo Theorem, Lecture Notes in Math., Springer, 192 (1971), 254-261. Zbl0221.58002MR45 #1059
  3. [3] N. M. CHRISTENSON, Zur Łojasiewicz-Ungleichung für differenzierbare Funktionen, Manuscripta Math., 20 (1977), 255-262. Zbl0354.26009
  4. [4] M. HERVÉ, Several complex variables, Local theory, Oxford, 1963. Zbl0113.29003MR27 #1616
  5. [5] M. W. HIRSCH, B. C. MAZUR, Smoothings of piecewise linear manifolds, Ann. Math. Studies, 80, Princeton Univ. Press, 1974. Zbl0298.57007MR54 #3711
  6. [6] L. HÖRMANDER, Linear partial differential operators, Springer, 1969. 
  7. [7] H. C. KING, Real analytic germs and their varieties at isolated singularities, Inv. Math., 37 (1976), 193-199. Zbl0318.57037MR54 #13114
  8. [8] R. C. KIRBY-L. C. SIEBENMANN, Foundational essays on topological manifolds, smoothings, and triangulation, Ann. Math. Studies, 88, Princeton Univ. Press, 1977. Zbl0361.57004MR58 #31082
  9. [9] T. C. KUO, The jet space Jr(n, p), Lecture Notes in Math., Springer, 192 (1971), 169-177. Zbl0221.58001MR43 #6939
  10. [10] N. LEVINSON, A canonical form for an analytic function of several variables at a critical point, Bull. Amer. Math. Soc., 66 (1960), 68-69. Zbl0192.18201MR26 #2634
  11. [11] N. LEVINSON, A polynomial canonical form for certain analytic functions of two variables at a critical point, Bull. Amer. Math. Soc., 66 (1960), 366-368. Zbl0192.18202MR26 #2635
  12. [12] B. MALGRANGE, Ideals of differentiable functions, Oxford Univ. Press, 1966. Zbl0177.17902
  13. [13] B. MALGRANGE, Sur les points singuliers des équations différentielles, Séminaire Goulaouic-Schwartz, 1972. Zbl0252.34031MR53 #11668
  14. [14] J. N. MATHER, How to stratify mapping and jet spaces, Lecture Notes in Math., Springer, 535 (1975), 128-176. Zbl0398.58008MR56 #13259
  15. [15] J. N. MATHER, Stability of C∞ mappings, III. Finitely determined map germs, Publ. Math. I.H.E.S., 35 (1968), 127-156. Zbl0159.25001MR43 #1215a
  16. [16] E. E. MOISE, Affine structures in 3-manifolds V. The triangulation theorem and Hauptvermutung, Ann. Math., 56 (1952), 96-114. Zbl0048.17102MR14,72d
  17. [17] E. E. MOISE, Geometric topology in dimension 2 and 3, GTM, Springer, 1977. Zbl0349.57001MR58 #7631
  18. [18] J. R. MUNKRES, Obstructions to the smoothing of piecewise differentiable structures, Ann. Math., 72 (1960), 521-554. Zbl0108.18101MR22 #12534
  19. [19] J. R. MUNKRES, Obstructions to imposing differentiable structures, Illinois J. Math., 8 (1964), 361-376. Zbl0126.18701MR31 #5209
  20. [20] M. NAGATA, Local rings, John Wiley, 1962. Zbl0123.03402MR27 #5790
  21. [21] R. PALAIS, Equivariant real algebraic differential topology, Part I. Smoothness categories and Nash manifolds, Notes Brandeis Univ., 1972. Zbl0281.57015
  22. [22] K. REICHARD, Nichtdifferenzierbare Morphismen differenzierbarer Räume, Manuscripta Math., 15 (1975), 243-250. Zbl0305.58003MR52 #6043
  23. [23] J. J. RISLER, Le théorème des zéros pour les idéaux de fonctions différentiables en dimension 2 et 3, Ann. Inst. Fourier, Grenoble, 26 (1976), 73-107. Zbl0324.46028MR54 #13108
  24. [24] M. SHIOTA, Differentiable functions equivalent to analytic functions, Publ. RIMS, Kyoto Univ., 9 (1973), 113-121. Zbl0271.58002MR49 #6272
  25. [25] M. SHIOTA, Transformations of germs of differentiable functions through changes of local coordinates, Publ. RIMS, Kyoto Univ., 9 (1973), 123-140. Zbl0271.58003MR51 #4307
  26. [26] M. SHIOTA, On germs of differentiable functions in two variables, Publ. RIMS, Kyoto Univ., 9 (1974), 319-324. Zbl0278.57013MR49 #6270
  27. [27] M. SHIOTA, Some results on formal power series and differentiable functions, Publ. RIMS, Kyoto Univ., 12 (1976), 49-53. Zbl0338.13026MR54 #3742
  28. [28] M. SHIOTA, Thesis, Univ. of Rennes, France, 1978. 
  29. [29] L. C. SIEBENMANN, Deformation of homeomorphisms on stratified sets, Comm. Math. Helv, 47 (1972), 123-163. Zbl0252.57012MR47 #7752
  30. [30] H. SKODA, J. BRIANÇON, Sur la clôture intégrale d'un idéal de germes de fonctions holomorphes en un point de Cn, C.R. Acad. Sc. Paris, 278 (1974), 949-951. Zbl0307.32007MR49 #5394
  31. [31] J. C. TOUGERON, Idéaux de fonctions différentiables I, Ann. Inst. Fourier, 18 (1968), 177-240. Zbl0188.45102MR39 #2171
  32. [32] M. VAN DER PUT, Some properties of the ring of germs of C∞ functions, Compositio Math., 34 (1977), 99-108. Zbl0404.58012MR57 #1549
  33. [33] H. WHITNEY, A function not constant on a connected set of critical points, Duke Math. J., 1 (1935), 514-517. Zbl0013.05801JFM61.1117.01
  34. [34] H. WHITNEY, Local properties of analytic varieties, Differential and Combinatorial topology, Princeton Univ. Press, 1965, 205-244. Zbl0129.39402MR32 #5924
  35. [35] H. WHITNEY, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc., 36 (1934), 63-89. Zbl0008.24902MR1501735JFM60.0217.01
  36. [36] G. T. WHYBURN, Analytic topology, Amer. Math. Soc. Colloq. Publ., 28, 1942. Zbl0061.39301MR4,86b

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.