Non-degenerescence of some spectral sequences
Annales de l'institut Fourier (1984)
- Volume: 34, Issue: 1, page 39-46
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topSarkaria, K. S.. "Non-degenerescence of some spectral sequences." Annales de l'institut Fourier 34.1 (1984): 39-46. <http://eudml.org/doc/74620>.
@article{Sarkaria1984,
abstract = {Each Lie algebra $\{\cal F\}$ of vector fields (e.g. those which are tangent to a foliation) of a smooth manifold $M$ définies, in a natural way, a spectral sequence $E_k(\{\cal F\})$ which converges to the de Rham cohomology of $M$ in a finite number of steps. We prove e.g. that for all $k\ge 0$ there exists a foliated compact manifold with $E_k(\{\cal F\})$ infinite dimensional.},
author = {Sarkaria, K. S.},
journal = {Annales de l'institut Fourier},
keywords = {Lie algebra of vector fields tangent to a foliation; spectral sequence converging to the de Rham cohomology},
language = {eng},
number = {1},
pages = {39-46},
publisher = {Association des Annales de l'Institut Fourier},
title = {Non-degenerescence of some spectral sequences},
url = {http://eudml.org/doc/74620},
volume = {34},
year = {1984},
}
TY - JOUR
AU - Sarkaria, K. S.
TI - Non-degenerescence of some spectral sequences
JO - Annales de l'institut Fourier
PY - 1984
PB - Association des Annales de l'Institut Fourier
VL - 34
IS - 1
SP - 39
EP - 46
AB - Each Lie algebra ${\cal F}$ of vector fields (e.g. those which are tangent to a foliation) of a smooth manifold $M$ définies, in a natural way, a spectral sequence $E_k({\cal F})$ which converges to the de Rham cohomology of $M$ in a finite number of steps. We prove e.g. that for all $k\ge 0$ there exists a foliated compact manifold with $E_k({\cal F})$ infinite dimensional.
LA - eng
KW - Lie algebra of vector fields tangent to a foliation; spectral sequence converging to the de Rham cohomology
UR - http://eudml.org/doc/74620
ER -
References
top- [1] A. FROHLICHER, Relations between the cohomology groups of Dolbeault and topological invariants, Proc. Nat. Acad. Sci. U.S.A., 41 (1955), 641-644. Zbl0065.16502MR17,409a
- [2] P. GRIFFITHS and J. HARRIS, Principles of Algebraic Geometry, John Wiley and Sons, New York, 1978. Zbl0408.14001MR80b:14001
- [3] K.S. SARKARIA, A finiteness theorem for foliated manifolds, Jour. Math. Soc. Japan, 30 (1978), 687-696. Zbl0398.57012MR80a:57014
- [4] G. SCHWARZ, On the de Rham cohomology of the leaf space of a foliation, Topology, 13 (1974), 185-187. Zbl0282.57016MR49 #6254
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.