Heat kernel on manifolds with ends

Alexander Grigor’yan[1]; Laurent Saloff-Coste[2]

  • [1] University of Bielefeld Department of Mathematics 33501 Bielefeld (German)
  • [2] Cornell University Department of Mathematics Ithaca, NY, 14853-4201 (USA)

Annales de l’institut Fourier (2009)

  • Volume: 59, Issue: 5, page 1917-1997
  • ISSN: 0373-0956

Abstract

top
We prove two-sided estimates of heat kernels on non-parabolic Riemannian manifolds with ends, assuming that the heat kernel on each end separately satisfies the Li-Yau estimate.

How to cite

top

Grigor’yan, Alexander, and Saloff-Coste, Laurent. "Heat kernel on manifolds with ends." Annales de l’institut Fourier 59.5 (2009): 1917-1997. <http://eudml.org/doc/10444>.

@article{Grigor2009,
abstract = {We prove two-sided estimates of heat kernels on non-parabolic Riemannian manifolds with ends, assuming that the heat kernel on each end separately satisfies the Li-Yau estimate.},
affiliation = {University of Bielefeld Department of Mathematics 33501 Bielefeld (German); Cornell University Department of Mathematics Ithaca, NY, 14853-4201 (USA)},
author = {Grigor’yan, Alexander, Saloff-Coste, Laurent},
journal = {Annales de l’institut Fourier},
keywords = {Heat kernel; manifold with ends; estimates of heat kernels; non-parabolic Riemannian manifold with ends},
language = {eng},
number = {5},
pages = {1917-1997},
publisher = {Association des Annales de l’institut Fourier},
title = {Heat kernel on manifolds with ends},
url = {http://eudml.org/doc/10444},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Grigor’yan, Alexander
AU - Saloff-Coste, Laurent
TI - Heat kernel on manifolds with ends
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 5
SP - 1917
EP - 1997
AB - We prove two-sided estimates of heat kernels on non-parabolic Riemannian manifolds with ends, assuming that the heat kernel on each end separately satisfies the Li-Yau estimate.
LA - eng
KW - Heat kernel; manifold with ends; estimates of heat kernels; non-parabolic Riemannian manifold with ends
UR - http://eudml.org/doc/10444
ER -

References

top
  1. J-Ph. Anker, P. Ostellari, The heat kernel on noncompact symmetric spaces, in : Lie groups and symmetric spaces, Amer. Math. Soc. Transl. Ser. 2, 210 (2003), 27-46 Zbl1036.22005MR2018351
  2. D.G. Aronson, Bounds for the fundamental solution of a parabolic equation, Bull. Amer. Math. Soc. 73 (2003), 890-896 Zbl0153.42002MR217444
  3. Heat kernels and analysis on manifolds, graphs, and metric spaces, (2003), AuschernP.P. Zbl1029.00030MR2041910
  4. M.T. Barlow, Diffusions on fractals, Lectures on Probability Theory and Statistics, Ecole d’été de Probabilités de Saint-Flour XXV - 1995 (1998), 1-121, Springer Zbl0916.60069MR1668115
  5. I. Benjamini, I. Chavel, E.A. Feldman, Heat kernel lower bounds on Riemannian manifolds using the old ideas of Nash, Proceedings of London Math. Soc. 72 (1996), 215-240 Zbl0853.58098MR1357093
  6. M. Cai, Ends of Riemannian manifolds with nonnegative Ricci curvature outside a compact set, Bull. Amer. Math. Soc. 24 (1991), 371-377 Zbl0728.53026MR1071028
  7. E. A. Carlen, S. Kusuoka, D. W. Stroock, Upper bounds for symmetric Markov transition functions, Ann. Inst. H. Poincaré Probab. Statist. 23 (1987), 245-287 Zbl0634.60066MR898496
  8. G. Carron, T. Coulhon, A. Hassell, Riesz transform and -cohomology for manifolds with Euclidean ends, Duke Math. J. 133 (2006), 59-93 Zbl1106.58021MR2219270
  9. I. Chavel, E.A. Feldman, Isoperimetric constants, the geometry of ends, and large time heat diffusion in Riemannian manifolds, Proc London Math. Soc. 62 (1991), 427-448 Zbl0723.58048MR1085648
  10. I. Chavel, E.A. Feldman, Modified isoperimetric constants, and large time heat diffusion in Riemannian manifolds, Duke Math. J. 64 (1991), 473-499 Zbl0753.58031MR1141283
  11. J. Cheeger, M. Gromov, M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Diff. Geom. 17 (1982), 15-53 Zbl0493.53035MR658471
  12. J. Cheeger, S.-T. Yau, A lower bound for the heat kernel, J. Diff. Geom. 34 (1981), 465-480 Zbl0481.35003MR615626
  13. S.Y. Cheng, P. Li, S.-T. Yau, On the upper estimate of the heat kernel of a complete Riemannian manifold, Amer. J. Math. 103 (1981), 1021-1063 Zbl0484.53035MR630777
  14. T. Coulhon, Noyau de la chaleur et discrétisation d’une variété riemannienne, Israël J. Math. 80 (1992), 289-300 Zbl0772.58055MR1202573
  15. T. Coulhon, Itération de Moser et estimation Gaussienne du noyau de la chaleur, J. Operator Theory 29 (1993), 157-165 Zbl0882.47014MR1277971
  16. T. Coulhon, Dimensions at infinity for Riemannian manifolds, Potential Anal. 4 (1995), 335-344 Zbl0847.53022MR1354888
  17. T. Coulhon, Ultracontractivity and Nash type inequalities, J. Funct. Anal. 141 (1996), 510-539 Zbl0887.58009MR1418518
  18. T. Coulhon, A. Grigor’yan, On-diagonal lower bounds for heat kernels on non-compact manifolds and Markov chains, Duke Math. J. 89 (1997), 133-199 Zbl0920.58064MR1458975
  19. T. Coulhon, L. Saloff-Coste, Minorations pour les chaînes de Markov unidimensionnelles, Prob. Theory Relat. Fields 97 (1993), 423-431 Zbl0792.60063MR1245253
  20. E.B. Davies, Explicit constants for Gaussian upper bounds on heat kernels, Amer. J. Math. 109 (1987), 319-334 Zbl0659.35009MR882426
  21. E.B. Davies, Gaussian upper bounds for the heat kernel of some second-order operators on Riemannian manifolds, J. Funct. Anal. 80 (1988), 16-32 Zbl0759.58045MR960220
  22. E.B. Davies, Heat kernels and spectral theory, (1989), Cambridge University Press Zbl0699.35006MR990239
  23. E.B. Davies, Heat kernel bounds, conservation of probability and the Feller property, J. d’Analyse Math. 58 (1992), 99-119 Zbl0808.58041MR1226938
  24. E.B. Davies, The state of art for heat kernel bounds on negatively curved manifolds, Bull. London Math. Soc. 25 (1993), 289-292 Zbl0802.58053MR1209255
  25. E.B. Davies, Non-Gaussian aspects of heat kernel behaviour, J. London Math. Soc. 55 (1997), 105-125 Zbl0879.35064MR1423289
  26. E.B. Davies, M.M.H. Pang, Sharp heat kernel bounds for some Laplace operators, Quart. J. Math. 40 (1989), 281-290 Zbl0701.35004MR1010819
  27. E.B. Davies, B. Simon, norms of non-critical Schrödinger semigroups, J. Funct. Anal. 102 (1991), 95-115 Zbl0743.47047MR1138839
  28. J. Dodziuk, Maximum principle for parabolic inequalities and the heat flow on open manifolds, Indiana Univ. Math. J. 32 (1983), 703-716 Zbl0526.58047MR711862
  29. M.P. Gaffney, The conservation property of the heat equation on Riemannian manifolds, Comm. Pure Appl. Math. 12 (1959), 1-11 Zbl0102.09202MR102097
  30. A. Grigor’yan, On the fundamental solution of the heat equation on an arbitrary Riemannian manifold, (in Russian) Mat. Zametki 41 (1987), 687-692 Zbl0661.58030MR898129
  31. A. Grigor’yan, The heat equation on non-compact Riemannian manifolds, (in Russian) Matem. Sbornik 182 (1991), 55-87 Zbl0743.58031
  32. A. Grigor’yan, Heat kernel on a manifold with a local Harnack inequality, Comm. Anal. Geom. 2 (1994), 111-138 Zbl0845.58056MR1312681
  33. A. Grigor’yan, Heat kernel upper bounds on a complete non-compact manifold, Revista Matemática Iberoamericana 10 (1994), 395-452 Zbl0810.58040MR1286481
  34. A. Grigor’yan, Gaussian upper bounds for the heat kernel on arbitrary manifolds, J. Diff. Geom. 45 (1997), 32-52 Zbl0865.58042MR1443330
  35. A. Grigor’yan, Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. Amer. Math. Soc. 36 (1999), 135-249 Zbl0927.58019MR1659871
  36. A. Grigor’yan, Heat kernels on weighted manifolds and applications, Contemporary Mathematics 398 (2006), 93-191 Zbl1106.58016
  37. A. Grigor’yan, L. Saloff-Coste, Heat kernel on manifolds with parabolic ends 
  38. A. Grigor’yan, L. Saloff-Coste, Heat kernel upper bounds on manifolds with ends 
  39. A. Grigor’yan, L. Saloff-Coste, Surgery of Faber-Krahn inequalities and applications to heat kernel upper bounds on manifolds with ends 
  40. A. Grigor’yan, L. Saloff-Coste, Heat kernel on connected sums of Riemannian manifolds, Math. Research Letters 6 (1999), 307-321 Zbl0957.58023MR1713132
  41. A. Grigor’yan, L. Saloff-Coste, Dirichlet heat kernel in the exterior of a compact set, Comm. Pure Appl. Math 55 (2002), 93-133 Zbl1037.58018MR1857881
  42. A. Grigor’yan, L. Saloff-Coste, Hitting probabilities for Brownian motion on Riemannian manifolds, J. Math. Pures et Appl. 81 (2002), 115-142 Zbl1042.58022MR1994606
  43. A. Grigor’yan, L. Saloff-Coste, Stability results for Harnack inequalities, Ann. Inst. Fourier, Grenoble 55 (2005), 825-890 Zbl1115.58024MR2149405
  44. P. Hajłasz, P. Koskela, Sobolev Met Poincaré, (2000), Memoirs of the AMS 688 Zbl0954.46022MR1683160
  45. A. Kasue, Harmonic functions with growth conditions on a manifold of asymptotically nonnegative curvature I., Geometry and Analysis on Manifolds (Katata/Kyoto, 1987) (1988), 158-181, Springer Zbl0685.31004MR961480
  46. Yu.T. Kuz’menko, S.A. Molchanov, Counterexamples to Liouville-type theorems, (in Russian) Vestnik Moskov. Univ. Ser. I Mat. Mekh. (1979), 39-43 Zbl0416.35033MR561406
  47. P. Li, L.F. Tam, Green’s function, harmonic functions and volume comparison, J. Diff. Geom. 41 (1995), 227-318 Zbl0827.53033
  48. P. Li, S.-T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), 153-201 Zbl0611.58045MR834612
  49. V. Liskevich, Z. Sobol, Estimates of integral kernels for semigroups associated with second-order elliptic operators with singular coefficients, Potential Analysis 18 (2003), 359-390 Zbl1023.35041MR1953267
  50. P.D. Milman, Yu.A. Semenov, Global heat kernel bounds via desingularizing wieghts, J. Funct. Anal. 212 (2004), 373-398 Zbl1057.47043MR2064932
  51. V. Minerbe, Weighted Sobolev inequalities and Ricci flat manifolds Zbl1166.53028
  52. S.A. Molchanov, Diffusion processes and Riemannian geometry, (in Russian) Uspekhi Matem. Nauk 30 (1975), 3-59 Zbl0315.53026MR413289
  53. F.O. Porper, S.D. Eidel’man, Two-side estimates of fundamental solutions of second-order parabolic equations and some applications, (in Russian) Uspekhi Matem. Nauk 39 (1984), 101-156 Zbl0582.35052MR747792
  54. S. Rosenberg, The Laplacian on a Riemannian manifold, (1997), Cambridge University Press Zbl0868.58074MR1462892
  55. L. Saloff-Coste, A note on Poincaré, Sobolev, and Harnack inequalities, Internat. Math. Res. Notices 2 (1992), 27-38 Zbl0769.58054MR1150597
  56. L. Saloff-Coste, Uniformly elliptic operators on Riemannian manifolds, J. Diff. Geom. 36 (1992), 417-450 Zbl0735.58032MR1180389
  57. L. Saloff-Coste, Parabolic Harnack inequality for divergence form second order differential operators, Potential Analysis 4 (1995), 429-467 Zbl0840.31006MR1354894
  58. L. Saloff-Coste, Aspects of Sobolev inequalities, (2002), Cambridge University Press Zbl0991.35002MR1872526
  59. C.-J. Sung, L.-F. Tam, J. Wang, Spaces of harmonic functions, J. London Math. Soc. (2) (2000), 789-806 Zbl0963.31004MR1766105
  60. N.Th. Varopoulos, Brownian motion and random walks on manifolds, Ann. Inst. Fourier 34 (1984), 243-269 Zbl0523.60071MR746500
  61. N.Th. Varopoulos, Hardy-Littlewood theory for semigroups, J. Funct. Anal. 63 (1985), 240-260 Zbl0608.47047MR803094
  62. N.Th. Varopoulos, Isoperimetric inequalities and Markov chains, J. Funct. Anal. 63 (1985), 215-239 Zbl0573.60059MR803093
  63. N.Th. Varopoulos, Random walks and Brownian motion on manifolds, Sympos. Math. 29 (1986), 97-109 Zbl0651.60013MR951181
  64. N.Th. Varopoulos, Small time Gaussian estimates of heat diffusion kernel. I. The semigroup technique, Bull. Sci. Math.(2) 113 (1989), 253-277 Zbl0703.58052MR1016211
  65. Q. S. Zhang, Global lower bound for the heat kernel of , Proceedings of the Amer. Math. Soc. 129 (2000), 1105-1112 Zbl0964.35024MR1814148

NotesEmbed ?

top

You must be logged in to post comments.