Heat kernel on manifolds with ends
Alexander Grigor’yan[1]; Laurent Saloff-Coste[2]
- [1] University of Bielefeld Department of Mathematics 33501 Bielefeld (German)
- [2] Cornell University Department of Mathematics Ithaca, NY, 14853-4201 (USA)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 5, page 1917-1997
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- J-Ph. Anker, P. Ostellari, The heat kernel on noncompact symmetric spaces, in : Lie groups and symmetric spaces, Amer. Math. Soc. Transl. Ser. 2, 210 (2003), 27-46 Zbl1036.22005MR2018351
- D.G. Aronson, Bounds for the fundamental solution of a parabolic equation, Bull. Amer. Math. Soc. 73 (2003), 890-896 Zbl0153.42002MR217444
- Heat kernels and analysis on manifolds, graphs, and metric spaces, (2003), AuschernP.P. Zbl1029.00030MR2041910
- M.T. Barlow, Diffusions on fractals, Lectures on Probability Theory and Statistics, Ecole d’été de Probabilités de Saint-Flour XXV - 1995 (1998), 1-121, Springer Zbl0916.60069MR1668115
- I. Benjamini, I. Chavel, E.A. Feldman, Heat kernel lower bounds on Riemannian manifolds using the old ideas of Nash, Proceedings of London Math. Soc. 72 (1996), 215-240 Zbl0853.58098MR1357093
- M. Cai, Ends of Riemannian manifolds with nonnegative Ricci curvature outside a compact set, Bull. Amer. Math. Soc. 24 (1991), 371-377 Zbl0728.53026MR1071028
- E. A. Carlen, S. Kusuoka, D. W. Stroock, Upper bounds for symmetric Markov transition functions, Ann. Inst. H. Poincaré Probab. Statist. 23 (1987), 245-287 Zbl0634.60066MR898496
- G. Carron, T. Coulhon, A. Hassell, Riesz transform and -cohomology for manifolds with Euclidean ends, Duke Math. J. 133 (2006), 59-93 Zbl1106.58021MR2219270
- I. Chavel, E.A. Feldman, Isoperimetric constants, the geometry of ends, and large time heat diffusion in Riemannian manifolds, Proc London Math. Soc. 62 (1991), 427-448 Zbl0723.58048MR1085648
- I. Chavel, E.A. Feldman, Modified isoperimetric constants, and large time heat diffusion in Riemannian manifolds, Duke Math. J. 64 (1991), 473-499 Zbl0753.58031MR1141283
- J. Cheeger, M. Gromov, M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Diff. Geom. 17 (1982), 15-53 Zbl0493.53035MR658471
- J. Cheeger, S.-T. Yau, A lower bound for the heat kernel, J. Diff. Geom. 34 (1981), 465-480 Zbl0481.35003MR615626
- S.Y. Cheng, P. Li, S.-T. Yau, On the upper estimate of the heat kernel of a complete Riemannian manifold, Amer. J. Math. 103 (1981), 1021-1063 Zbl0484.53035MR630777
- T. Coulhon, Noyau de la chaleur et discrétisation d’une variété riemannienne, Israël J. Math. 80 (1992), 289-300 Zbl0772.58055MR1202573
- T. Coulhon, Itération de Moser et estimation Gaussienne du noyau de la chaleur, J. Operator Theory 29 (1993), 157-165 Zbl0882.47014MR1277971
- T. Coulhon, Dimensions at infinity for Riemannian manifolds, Potential Anal. 4 (1995), 335-344 Zbl0847.53022MR1354888
- T. Coulhon, Ultracontractivity and Nash type inequalities, J. Funct. Anal. 141 (1996), 510-539 Zbl0887.58009MR1418518
- T. Coulhon, A. Grigor’yan, On-diagonal lower bounds for heat kernels on non-compact manifolds and Markov chains, Duke Math. J. 89 (1997), 133-199 Zbl0920.58064MR1458975
- T. Coulhon, L. Saloff-Coste, Minorations pour les chaînes de Markov unidimensionnelles, Prob. Theory Relat. Fields 97 (1993), 423-431 Zbl0792.60063MR1245253
- E.B. Davies, Explicit constants for Gaussian upper bounds on heat kernels, Amer. J. Math. 109 (1987), 319-334 Zbl0659.35009MR882426
- E.B. Davies, Gaussian upper bounds for the heat kernel of some second-order operators on Riemannian manifolds, J. Funct. Anal. 80 (1988), 16-32 Zbl0759.58045MR960220
- E.B. Davies, Heat kernels and spectral theory, (1989), Cambridge University Press Zbl0699.35006MR990239
- E.B. Davies, Heat kernel bounds, conservation of probability and the Feller property, J. d’Analyse Math. 58 (1992), 99-119 Zbl0808.58041MR1226938
- E.B. Davies, The state of art for heat kernel bounds on negatively curved manifolds, Bull. London Math. Soc. 25 (1993), 289-292 Zbl0802.58053MR1209255
- E.B. Davies, Non-Gaussian aspects of heat kernel behaviour, J. London Math. Soc. 55 (1997), 105-125 Zbl0879.35064MR1423289
- E.B. Davies, M.M.H. Pang, Sharp heat kernel bounds for some Laplace operators, Quart. J. Math. 40 (1989), 281-290 Zbl0701.35004MR1010819
- E.B. Davies, B. Simon, norms of non-critical Schrödinger semigroups, J. Funct. Anal. 102 (1991), 95-115 Zbl0743.47047MR1138839
- J. Dodziuk, Maximum principle for parabolic inequalities and the heat flow on open manifolds, Indiana Univ. Math. J. 32 (1983), 703-716 Zbl0526.58047MR711862
- M.P. Gaffney, The conservation property of the heat equation on Riemannian manifolds, Comm. Pure Appl. Math. 12 (1959), 1-11 Zbl0102.09202MR102097
- A. Grigor’yan, On the fundamental solution of the heat equation on an arbitrary Riemannian manifold, (in Russian) Mat. Zametki 41 (1987), 687-692 Zbl0661.58030MR898129
- A. Grigor’yan, The heat equation on non-compact Riemannian manifolds, (in Russian) Matem. Sbornik 182 (1991), 55-87 Zbl0743.58031
- A. Grigor’yan, Heat kernel on a manifold with a local Harnack inequality, Comm. Anal. Geom. 2 (1994), 111-138 Zbl0845.58056MR1312681
- A. Grigor’yan, Heat kernel upper bounds on a complete non-compact manifold, Revista Matemática Iberoamericana 10 (1994), 395-452 Zbl0810.58040MR1286481
- A. Grigor’yan, Gaussian upper bounds for the heat kernel on arbitrary manifolds, J. Diff. Geom. 45 (1997), 32-52 Zbl0865.58042MR1443330
- A. Grigor’yan, Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. Amer. Math. Soc. 36 (1999), 135-249 Zbl0927.58019MR1659871
- A. Grigor’yan, Heat kernels on weighted manifolds and applications, Contemporary Mathematics 398 (2006), 93-191 Zbl1106.58016
- A. Grigor’yan, L. Saloff-Coste, Heat kernel on manifolds with parabolic ends
- A. Grigor’yan, L. Saloff-Coste, Heat kernel upper bounds on manifolds with ends
- A. Grigor’yan, L. Saloff-Coste, Surgery of Faber-Krahn inequalities and applications to heat kernel upper bounds on manifolds with ends
- A. Grigor’yan, L. Saloff-Coste, Heat kernel on connected sums of Riemannian manifolds, Math. Research Letters 6 (1999), 307-321 Zbl0957.58023MR1713132
- A. Grigor’yan, L. Saloff-Coste, Dirichlet heat kernel in the exterior of a compact set, Comm. Pure Appl. Math 55 (2002), 93-133 Zbl1037.58018MR1857881
- A. Grigor’yan, L. Saloff-Coste, Hitting probabilities for Brownian motion on Riemannian manifolds, J. Math. Pures et Appl. 81 (2002), 115-142 Zbl1042.58022MR1994606
- A. Grigor’yan, L. Saloff-Coste, Stability results for Harnack inequalities, Ann. Inst. Fourier, Grenoble 55 (2005), 825-890 Zbl1115.58024MR2149405
- P. Hajłasz, P. Koskela, Sobolev Met Poincaré, (2000), Memoirs of the AMS 688 Zbl0954.46022MR1683160
- A. Kasue, Harmonic functions with growth conditions on a manifold of asymptotically nonnegative curvature I., Geometry and Analysis on Manifolds (Katata/Kyoto, 1987) (1988), 158-181, Springer Zbl0685.31004MR961480
- Yu.T. Kuz’menko, S.A. Molchanov, Counterexamples to Liouville-type theorems, (in Russian) Vestnik Moskov. Univ. Ser. I Mat. Mekh. (1979), 39-43 Zbl0416.35033MR561406
- P. Li, L.F. Tam, Green’s function, harmonic functions and volume comparison, J. Diff. Geom. 41 (1995), 227-318 Zbl0827.53033
- P. Li, S.-T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), 153-201 Zbl0611.58045MR834612
- V. Liskevich, Z. Sobol, Estimates of integral kernels for semigroups associated with second-order elliptic operators with singular coefficients, Potential Analysis 18 (2003), 359-390 Zbl1023.35041MR1953267
- P.D. Milman, Yu.A. Semenov, Global heat kernel bounds via desingularizing wieghts, J. Funct. Anal. 212 (2004), 373-398 Zbl1057.47043MR2064932
- V. Minerbe, Weighted Sobolev inequalities and Ricci flat manifolds Zbl1166.53028
- S.A. Molchanov, Diffusion processes and Riemannian geometry, (in Russian) Uspekhi Matem. Nauk 30 (1975), 3-59 Zbl0315.53026MR413289
- F.O. Porper, S.D. Eidel’man, Two-side estimates of fundamental solutions of second-order parabolic equations and some applications, (in Russian) Uspekhi Matem. Nauk 39 (1984), 101-156 Zbl0582.35052MR747792
- S. Rosenberg, The Laplacian on a Riemannian manifold, (1997), Cambridge University Press Zbl0868.58074MR1462892
- L. Saloff-Coste, A note on Poincaré, Sobolev, and Harnack inequalities, Internat. Math. Res. Notices 2 (1992), 27-38 Zbl0769.58054MR1150597
- L. Saloff-Coste, Uniformly elliptic operators on Riemannian manifolds, J. Diff. Geom. 36 (1992), 417-450 Zbl0735.58032MR1180389
- L. Saloff-Coste, Parabolic Harnack inequality for divergence form second order differential operators, Potential Analysis 4 (1995), 429-467 Zbl0840.31006MR1354894
- L. Saloff-Coste, Aspects of Sobolev inequalities, (2002), Cambridge University Press Zbl0991.35002MR1872526
- C.-J. Sung, L.-F. Tam, J. Wang, Spaces of harmonic functions, J. London Math. Soc. (2) (2000), 789-806 Zbl0963.31004MR1766105
- N.Th. Varopoulos, Brownian motion and random walks on manifolds, Ann. Inst. Fourier 34 (1984), 243-269 Zbl0523.60071MR746500
- N.Th. Varopoulos, Hardy-Littlewood theory for semigroups, J. Funct. Anal. 63 (1985), 240-260 Zbl0608.47047MR803094
- N.Th. Varopoulos, Isoperimetric inequalities and Markov chains, J. Funct. Anal. 63 (1985), 215-239 Zbl0573.60059MR803093
- N.Th. Varopoulos, Random walks and Brownian motion on manifolds, Sympos. Math. 29 (1986), 97-109 Zbl0651.60013MR951181
- N.Th. Varopoulos, Small time Gaussian estimates of heat diffusion kernel. I. The semigroup technique, Bull. Sci. Math.(2) 113 (1989), 253-277 Zbl0703.58052MR1016211
- Q. S. Zhang, Global lower bound for the heat kernel of , Proceedings of the Amer. Math. Soc. 129 (2000), 1105-1112 Zbl0964.35024MR1814148