A C * -algebraic Schoenberg theorem

Ola Bratteli; Palle E. T. Jorgensen; Akitaka Kishimoto; Donald W. Robinson

Annales de l'institut Fourier (1984)

  • Volume: 34, Issue: 3, page 155-187
  • ISSN: 0373-0956

Abstract

top
Let 𝔄 be a C * -algebra, G a compact abelian group, τ an action of G by * -automorphisms of 𝔄 , 𝔄 τ the fixed point algebra of τ and 𝔄 F the dense sub-algebra of G -finite elements in 𝔄 . Further let H be a linear operator from 𝔄 F into 𝔄 which commutes with τ and vanishes on 𝔄 τ . We prove that H is a complete dissipation if and only if H is closable and its closure generates a C 0 -semigroup of completely positive contractions. These complete dissipations are classified in terms of certain twisted negative definite maps from the dual group G ^ into dissipative operators affiliated with the center of the multiplier algebra of 𝔄 τ . We also argue that the complete dissipation property is strictly stronger than the usual dissipation property, except in special circumstances such as when 𝔄 is abelian.

How to cite

top

Bratteli, Ola, et al. "A $C^*$-algebraic Schoenberg theorem." Annales de l'institut Fourier 34.3 (1984): 155-187. <http://eudml.org/doc/74641>.

@article{Bratteli1984,
abstract = {Let $\{\frak A\}$ be a $C^*$-algebra, $G$ a compact abelian group, $\tau $ an action of $G$ by $*$-automorphisms of $\{\frak A\},\{\frak A\}^\{\tau \}$ the fixed point algebra of $\tau $ and $\{\frak A\}_F$ the dense sub-algebra of $G$-finite elements in $\{\frak A\}$. Further let $H$ be a linear operator from $\{\frak A\}_ F$ into $\{\frak A\}$ which commutes with $\tau $ and vanishes on $\{\frak A\}^\{\tau \}$. We prove that $H$ is a complete dissipation if and only if $H$ is closable and its closure generates a $C_0$-semigroup of completely positive contractions. These complete dissipations are classified in terms of certain twisted negative definite maps from the dual group $\hat\{G\}$ into dissipative operators affiliated with the center of the multiplier algebra of $\{\frak A\}^\{\tau \}$. We also argue that the complete dissipation property is strictly stronger than the usual dissipation property, except in special circumstances such as when $\{\frak A\}$ is abelian.},
author = {Bratteli, Ola, Jorgensen, Palle E. T., Kishimoto, Akitaka, Robinson, Donald W.},
journal = {Annales de l'institut Fourier},
keywords = {-algebraic Schoenberg theorem; fixed point algebra; complete dissipation; -semigroup of completely positive contractions; twisted negative definite maps; dual group; center of the multiplier algebra},
language = {eng},
number = {3},
pages = {155-187},
publisher = {Association des Annales de l'Institut Fourier},
title = {A $C^*$-algebraic Schoenberg theorem},
url = {http://eudml.org/doc/74641},
volume = {34},
year = {1984},
}

TY - JOUR
AU - Bratteli, Ola
AU - Jorgensen, Palle E. T.
AU - Kishimoto, Akitaka
AU - Robinson, Donald W.
TI - A $C^*$-algebraic Schoenberg theorem
JO - Annales de l'institut Fourier
PY - 1984
PB - Association des Annales de l'Institut Fourier
VL - 34
IS - 3
SP - 155
EP - 187
AB - Let ${\frak A}$ be a $C^*$-algebra, $G$ a compact abelian group, $\tau $ an action of $G$ by $*$-automorphisms of ${\frak A},{\frak A}^{\tau }$ the fixed point algebra of $\tau $ and ${\frak A}_F$ the dense sub-algebra of $G$-finite elements in ${\frak A}$. Further let $H$ be a linear operator from ${\frak A}_ F$ into ${\frak A}$ which commutes with $\tau $ and vanishes on ${\frak A}^{\tau }$. We prove that $H$ is a complete dissipation if and only if $H$ is closable and its closure generates a $C_0$-semigroup of completely positive contractions. These complete dissipations are classified in terms of certain twisted negative definite maps from the dual group $\hat{G}$ into dissipative operators affiliated with the center of the multiplier algebra of ${\frak A}^{\tau }$. We also argue that the complete dissipation property is strictly stronger than the usual dissipation property, except in special circumstances such as when ${\frak A}$ is abelian.
LA - eng
KW - -algebraic Schoenberg theorem; fixed point algebra; complete dissipation; -semigroup of completely positive contractions; twisted negative definite maps; dual group; center of the multiplier algebra
UR - http://eudml.org/doc/74641
ER -

References

top
  1. [1] C.A. AKEMANN and M.E. WALTER, Unbounded negative definite functions, Can J. Math., 33 (1981), 862-871. Zbl0437.22004MR83b:43009
  2. [2] H. ARAKI, Normal positive linear mappings of norm 1 from a von Neumann algebra into its commutant and its application, Pub. RIMS, Kyoto, 8 (1972/1973), 439-469. Zbl0255.46050MR47 #7451
  3. [3] W.B. ARVESON, Subalgebras of C*-algebras, Acta Math., 123 (1969), 141-224. Zbl0194.15701MR40 #6274
  4. [4] C. BERG and G. FORST, Potential Theory on Locally Compact Abelian Groups, Springer-Verlag, Berlin-Heidelberg-New York, 1975. Zbl0308.31001MR58 #1204
  5. [5] O. BRATTELI, G.A. ELLIOT and P.E.T. JØRGENSEN, Decomposition of unbounded derivations into invariant and approximately inner parts, Crelle's Journal, 346 (1984), 166-193. Zbl0515.46057MR85j:46106
  6. [6] O. BRATTELI and D.E. EVANS, Dynamical semigroups commuting with compact abelian actions, Ergod. Th. & Dynam. Sys., 3 (1983), 187-217. Zbl0528.46051MR85f:46119
  7. [7] O. BRATTELI and P.E.T. JØRGENSEN, Unbounded *-derivations and infinitesimal generators on operator algebra in Proceedings Symp. in Pure Math., Vol. 38 Part 2, 353-365, AMS Providence, R.I. (1982). Zbl0498.46049MR84f:46083
  8. [8] O. BRATTELI and P.E.T. JØRGENSEN, Unbounded derivations tangential to compact groups of automorphisms, J. Funct. Anal., 48 (1982), 107-133. Zbl0485.46035MR84b:46073
  9. [9] O. BRATTELI and D.W. ROBINSON, Operator Algebras and Quantum Statistical Mechanics, Vol I, Springer-Verlag, New York, 1979. Zbl0421.46048MR81a:46070
  10. [10] O. BRATTELI and D.W. ROBINSON, Operator Algebras and Quantum Statistical Mechanics, Vol. II Springer-Verlag, New York, 1981. Zbl0463.46052MR82k:82013
  11. [11] O. BRATTELI and D.W. ROBINSON, positive C0-semigroups on C*-algebras, Math. Scand., 49 (1981), 259-274. Zbl0485.46033MR83h:46076
  12. [12] M.-D CHOI, Some assorted inequalities for positive linear maps on C*-algebras, J. Operator Theory, 4 (1980), 271-285. Zbl0511.46051MR82c:46073
  13. [13] E. CHRISTENSEN and D.E. EVANS, Cohomology of operator algebras and quantum dynamical semigroups, J. London Math. Soc. (2), 20 (1978), 358-368. Zbl0448.46040
  14. [14] D.E. EVANS, Positive linear maps on operator algebras, Commun. Math. Phys., 48 (1976), 15-22. Zbl0337.46050MR54 #8298
  15. [15] D.E. EVANS and H. HANCHE-OLSEN, The generators of positive semigroups, J. Funct. Anal., 32 (1979), 207-212. Zbl0428.46042MR80h:47049
  16. [16] F.R. GANTMACHER, The theory of matrices, Vol. 1, Chelsea Publishing Co., New York, 1959. Zbl0085.01001
  17. [17] A. KISHIMOTO, Dissipations and derivations, Commun. Math. Phys., 47 (1976), 25-32. Zbl0318.46071MR53 #6335
  18. [18] G. LINDBLAD, On the generators of quantum dynamical semigroups, Commun. Math. Phys., 48 (1976), 119-130. Zbl0343.47031MR54 #1990
  19. [19] M.A. NAIMARK, Normed Algebras, Walters-Noordhoff, Groningen, 1972. 
  20. [20] D. OLSEN, G.K. PEDERSEN and M. TAKESAKI, Ergodic actions of compact abelian groups, J. Operator Theory, 3 (1980), 237-269. Zbl0456.46053MR83j:46078
  21. [21] K. PARTHASARATHY and K. SCHMIDT, Positive definite kernels, continuous tensor products, and central limit theorems of probability theory, SLN 272, Springer-Verlag, Berlin, 1972. Zbl0237.43005MR58 #29849
  22. [22] G.K. PEDERSEN, C*-algebras and their Automorphism Groups, Academic Press, London, 1979. Zbl0416.46043MR81e:46037
  23. [23] D.W. ROBINSON, Strongly positive semigroups and faithful invariant states, Commun. Math. Phys., 85 (1982), 129-142. Zbl0532.46040MR83k:46057
  24. [24] S. SAKAI, Developments in the theory of unbounded derivations in C*-algebras, in Operator Algebras and Applications, Proceedings of Symp. Pure Math, Vol. 38 Part 1, 309-311. AMS, Providence R.I. (1980). Zbl0533.46038MR84g:46102
  25. [25] I.J. SCHOENBERG, Metric spaces and positive definite functions, Trans. Amer Math. Soc., 44 (1938), 522-536. Zbl0019.41502MR1501980JFM64.0617.02
  26. [26] I. SCHUR, Bemerkungen zur Theorie der beschränkten bilinearformen mit unendlich vielen Veränderlichen, J. für die reine u.ang. Math., 140 (1911), 1-28. Zbl42.0367.01JFM42.0367.01
  27. [27] I.E. SEGAL, A non-commutative version of abstract integration, Ann. Math., 57 (1953), 401-457. Zbl0051.34201MR14,991f
  28. [28] J. SLAWNY, On factor representations and the C*algebra of the canonical commutation relations, Commun. Math. Phys., 24 (1971), 151-170. Zbl0225.46068MR45 #3017
  29. [29] W.F. STINESPRING, Positive function on C*algebras, Proc. Amer. Math. Soc., 6 (1955), 211-216. Zbl0064.36703MR16,1033b
  30. [30] M.H. STONE, On unbounded operators in Hilbert space, J. Indian Math. Soc., 15 (1951), 155-192. Zbl0047.11102MR14,565d
  31. [31] M.D. CHOI, Positive linear maps on C*-algebras, Can. J. Math., 24 (1972), 520-529. Zbl0235.46090MR47 #4009
  32. [32] A. WEIL, L'intégration dans les groupes topologiques et ses applications, Hermann, Paris, 1940. Zbl0063.08195MR3,198bJFM66.1205.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.