A -algebraic Schoenberg theorem
Ola Bratteli; Palle E. T. Jorgensen; Akitaka Kishimoto; Donald W. Robinson
Annales de l'institut Fourier (1984)
- Volume: 34, Issue: 3, page 155-187
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBratteli, Ola, et al. "A $C^*$-algebraic Schoenberg theorem." Annales de l'institut Fourier 34.3 (1984): 155-187. <http://eudml.org/doc/74641>.
@article{Bratteli1984,
abstract = {Let $\{\frak A\}$ be a $C^*$-algebra, $G$ a compact abelian group, $\tau $ an action of $G$ by $*$-automorphisms of $\{\frak A\},\{\frak A\}^\{\tau \}$ the fixed point algebra of $\tau $ and $\{\frak A\}_F$ the dense sub-algebra of $G$-finite elements in $\{\frak A\}$. Further let $H$ be a linear operator from $\{\frak A\}_ F$ into $\{\frak A\}$ which commutes with $\tau $ and vanishes on $\{\frak A\}^\{\tau \}$. We prove that $H$ is a complete dissipation if and only if $H$ is closable and its closure generates a $C_0$-semigroup of completely positive contractions. These complete dissipations are classified in terms of certain twisted negative definite maps from the dual group $\hat\{G\}$ into dissipative operators affiliated with the center of the multiplier algebra of $\{\frak A\}^\{\tau \}$. We also argue that the complete dissipation property is strictly stronger than the usual dissipation property, except in special circumstances such as when $\{\frak A\}$ is abelian.},
author = {Bratteli, Ola, Jorgensen, Palle E. T., Kishimoto, Akitaka, Robinson, Donald W.},
journal = {Annales de l'institut Fourier},
keywords = {-algebraic Schoenberg theorem; fixed point algebra; complete dissipation; -semigroup of completely positive contractions; twisted negative definite maps; dual group; center of the multiplier algebra},
language = {eng},
number = {3},
pages = {155-187},
publisher = {Association des Annales de l'Institut Fourier},
title = {A $C^*$-algebraic Schoenberg theorem},
url = {http://eudml.org/doc/74641},
volume = {34},
year = {1984},
}
TY - JOUR
AU - Bratteli, Ola
AU - Jorgensen, Palle E. T.
AU - Kishimoto, Akitaka
AU - Robinson, Donald W.
TI - A $C^*$-algebraic Schoenberg theorem
JO - Annales de l'institut Fourier
PY - 1984
PB - Association des Annales de l'Institut Fourier
VL - 34
IS - 3
SP - 155
EP - 187
AB - Let ${\frak A}$ be a $C^*$-algebra, $G$ a compact abelian group, $\tau $ an action of $G$ by $*$-automorphisms of ${\frak A},{\frak A}^{\tau }$ the fixed point algebra of $\tau $ and ${\frak A}_F$ the dense sub-algebra of $G$-finite elements in ${\frak A}$. Further let $H$ be a linear operator from ${\frak A}_ F$ into ${\frak A}$ which commutes with $\tau $ and vanishes on ${\frak A}^{\tau }$. We prove that $H$ is a complete dissipation if and only if $H$ is closable and its closure generates a $C_0$-semigroup of completely positive contractions. These complete dissipations are classified in terms of certain twisted negative definite maps from the dual group $\hat{G}$ into dissipative operators affiliated with the center of the multiplier algebra of ${\frak A}^{\tau }$. We also argue that the complete dissipation property is strictly stronger than the usual dissipation property, except in special circumstances such as when ${\frak A}$ is abelian.
LA - eng
KW - -algebraic Schoenberg theorem; fixed point algebra; complete dissipation; -semigroup of completely positive contractions; twisted negative definite maps; dual group; center of the multiplier algebra
UR - http://eudml.org/doc/74641
ER -
References
top- [1] C.A. AKEMANN and M.E. WALTER, Unbounded negative definite functions, Can J. Math., 33 (1981), 862-871. Zbl0437.22004MR83b:43009
- [2] H. ARAKI, Normal positive linear mappings of norm 1 from a von Neumann algebra into its commutant and its application, Pub. RIMS, Kyoto, 8 (1972/1973), 439-469. Zbl0255.46050MR47 #7451
- [3] W.B. ARVESON, Subalgebras of C*-algebras, Acta Math., 123 (1969), 141-224. Zbl0194.15701MR40 #6274
- [4] C. BERG and G. FORST, Potential Theory on Locally Compact Abelian Groups, Springer-Verlag, Berlin-Heidelberg-New York, 1975. Zbl0308.31001MR58 #1204
- [5] O. BRATTELI, G.A. ELLIOT and P.E.T. JØRGENSEN, Decomposition of unbounded derivations into invariant and approximately inner parts, Crelle's Journal, 346 (1984), 166-193. Zbl0515.46057MR85j:46106
- [6] O. BRATTELI and D.E. EVANS, Dynamical semigroups commuting with compact abelian actions, Ergod. Th. & Dynam. Sys., 3 (1983), 187-217. Zbl0528.46051MR85f:46119
- [7] O. BRATTELI and P.E.T. JØRGENSEN, Unbounded *-derivations and infinitesimal generators on operator algebra in Proceedings Symp. in Pure Math., Vol. 38 Part 2, 353-365, AMS Providence, R.I. (1982). Zbl0498.46049MR84f:46083
- [8] O. BRATTELI and P.E.T. JØRGENSEN, Unbounded derivations tangential to compact groups of automorphisms, J. Funct. Anal., 48 (1982), 107-133. Zbl0485.46035MR84b:46073
- [9] O. BRATTELI and D.W. ROBINSON, Operator Algebras and Quantum Statistical Mechanics, Vol I, Springer-Verlag, New York, 1979. Zbl0421.46048MR81a:46070
- [10] O. BRATTELI and D.W. ROBINSON, Operator Algebras and Quantum Statistical Mechanics, Vol. II Springer-Verlag, New York, 1981. Zbl0463.46052MR82k:82013
- [11] O. BRATTELI and D.W. ROBINSON, positive C0-semigroups on C*-algebras, Math. Scand., 49 (1981), 259-274. Zbl0485.46033MR83h:46076
- [12] M.-D CHOI, Some assorted inequalities for positive linear maps on C*-algebras, J. Operator Theory, 4 (1980), 271-285. Zbl0511.46051MR82c:46073
- [13] E. CHRISTENSEN and D.E. EVANS, Cohomology of operator algebras and quantum dynamical semigroups, J. London Math. Soc. (2), 20 (1978), 358-368. Zbl0448.46040
- [14] D.E. EVANS, Positive linear maps on operator algebras, Commun. Math. Phys., 48 (1976), 15-22. Zbl0337.46050MR54 #8298
- [15] D.E. EVANS and H. HANCHE-OLSEN, The generators of positive semigroups, J. Funct. Anal., 32 (1979), 207-212. Zbl0428.46042MR80h:47049
- [16] F.R. GANTMACHER, The theory of matrices, Vol. 1, Chelsea Publishing Co., New York, 1959. Zbl0085.01001
- [17] A. KISHIMOTO, Dissipations and derivations, Commun. Math. Phys., 47 (1976), 25-32. Zbl0318.46071MR53 #6335
- [18] G. LINDBLAD, On the generators of quantum dynamical semigroups, Commun. Math. Phys., 48 (1976), 119-130. Zbl0343.47031MR54 #1990
- [19] M.A. NAIMARK, Normed Algebras, Walters-Noordhoff, Groningen, 1972.
- [20] D. OLSEN, G.K. PEDERSEN and M. TAKESAKI, Ergodic actions of compact abelian groups, J. Operator Theory, 3 (1980), 237-269. Zbl0456.46053MR83j:46078
- [21] K. PARTHASARATHY and K. SCHMIDT, Positive definite kernels, continuous tensor products, and central limit theorems of probability theory, SLN 272, Springer-Verlag, Berlin, 1972. Zbl0237.43005MR58 #29849
- [22] G.K. PEDERSEN, C*-algebras and their Automorphism Groups, Academic Press, London, 1979. Zbl0416.46043MR81e:46037
- [23] D.W. ROBINSON, Strongly positive semigroups and faithful invariant states, Commun. Math. Phys., 85 (1982), 129-142. Zbl0532.46040MR83k:46057
- [24] S. SAKAI, Developments in the theory of unbounded derivations in C*-algebras, in Operator Algebras and Applications, Proceedings of Symp. Pure Math, Vol. 38 Part 1, 309-311. AMS, Providence R.I. (1980). Zbl0533.46038MR84g:46102
- [25] I.J. SCHOENBERG, Metric spaces and positive definite functions, Trans. Amer Math. Soc., 44 (1938), 522-536. Zbl0019.41502MR1501980JFM64.0617.02
- [26] I. SCHUR, Bemerkungen zur Theorie der beschränkten bilinearformen mit unendlich vielen Veränderlichen, J. für die reine u.ang. Math., 140 (1911), 1-28. Zbl42.0367.01JFM42.0367.01
- [27] I.E. SEGAL, A non-commutative version of abstract integration, Ann. Math., 57 (1953), 401-457. Zbl0051.34201MR14,991f
- [28] J. SLAWNY, On factor representations and the C*algebra of the canonical commutation relations, Commun. Math. Phys., 24 (1971), 151-170. Zbl0225.46068MR45 #3017
- [29] W.F. STINESPRING, Positive function on C*algebras, Proc. Amer. Math. Soc., 6 (1955), 211-216. Zbl0064.36703MR16,1033b
- [30] M.H. STONE, On unbounded operators in Hilbert space, J. Indian Math. Soc., 15 (1951), 155-192. Zbl0047.11102MR14,565d
- [31] M.D. CHOI, Positive linear maps on C*-algebras, Can. J. Math., 24 (1972), 520-529. Zbl0235.46090MR47 #4009
- [32] A. WEIL, L'intégration dans les groupes topologiques et ses applications, Hermann, Paris, 1940. Zbl0063.08195MR3,198bJFM66.1205.02
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.