Restrictions of Fourier transforms to curves

S. W. Drury

Annales de l'institut Fourier (1985)

  • Volume: 35, Issue: 1, page 117-123
  • ISSN: 0373-0956

Abstract

top
Let x ( t ) = ( t , 1 2 t 2 , 1 6 t 3 ) a certain curve in R 3 . We investigate inequalities of the type { | f ^ ( x ( t ) ) | b d t } 1 / b C f a for f 𝒮 ( R 3). Our results improve improve an earlier restriction theorem of Prestini. Various generalizations are also discussed.

How to cite

top

Drury, S. W.. "Restrictions of Fourier transforms to curves." Annales de l'institut Fourier 35.1 (1985): 117-123. <http://eudml.org/doc/74660>.

@article{Drury1985,
abstract = {Let $x(t)=(t,\{1\over 2\} t^2,\{1\over 6\}t^3)$ a certain curve in $\{\bf R\}^ 3.$ We investigate inequalities of the type $\lbrace \int \vert \hat\{f\}(x(t))\vert ^ b dt\rbrace ^\{1/b\}\le C \Vert f\Vert _ a$ for $f\in \{\cal S\}(\{\bf R\}$ 3). Our results improve improve an earlier restriction theorem of Prestini. Various generalizations are also discussed.},
author = {Drury, S. W.},
journal = {Annales de l'institut Fourier},
keywords = {curve; inequalities},
language = {eng},
number = {1},
pages = {117-123},
publisher = {Association des Annales de l'Institut Fourier},
title = {Restrictions of Fourier transforms to curves},
url = {http://eudml.org/doc/74660},
volume = {35},
year = {1985},
}

TY - JOUR
AU - Drury, S. W.
TI - Restrictions of Fourier transforms to curves
JO - Annales de l'institut Fourier
PY - 1985
PB - Association des Annales de l'Institut Fourier
VL - 35
IS - 1
SP - 117
EP - 123
AB - Let $x(t)=(t,{1\over 2} t^2,{1\over 6}t^3)$ a certain curve in ${\bf R}^ 3.$ We investigate inequalities of the type $\lbrace \int \vert \hat{f}(x(t))\vert ^ b dt\rbrace ^{1/b}\le C \Vert f\Vert _ a$ for $f\in {\cal S}({\bf R}$ 3). Our results improve improve an earlier restriction theorem of Prestini. Various generalizations are also discussed.
LA - eng
KW - curve; inequalities
UR - http://eudml.org/doc/74660
ER -

References

top
  1. [1] E.M. STEIN, Harmonic Analysis on Rn, Studies in Harmonic Analysis, 97-135, The Mathematical Association of America Studies in Mathematics vol. 13, 1976. Zbl0337.42016MR57 #990
  2. [2] P.A. THOMAS, Restriction theorems for the Fourier Transform, Proceedings of Symposia in Pure Mathematics, vol. 35 part 1 (1979), 111-114, AMS, Providence. Zbl0506.42020MR81d:42029
  3. [3] E. PRESTINI, A restriction theorem for space curves, Proc. A.M.S., 70 (1978), 8-10. Zbl0343.42014MR57 #7026
  4. [4] H.W. GUGGENHEIMER, Differential Geometry, Dover, New York, 1977. Zbl0357.53002MR58 #12737
  5. [5] A. ZYGMUND, On Fourier coefficients and transforms of functions of two variables, Studia Math., 50 (1974), 189-201. Zbl0278.42005MR52 #8788
  6. [6] A. BENEDECK and R. PANZONE, The Lp spaces with mixed norm, Duke Math J., 28 (1961), 301-324. Zbl0107.08902
  7. [7] E.M. STEIN and G. WEISS, Introduction to Fourier Analysis on Euclidean Spaces, Princeton U.P., Princeton 1971. Zbl0232.42007MR46 #4102
  8. [8] R.A. HUNT, On L(p, q) spaces, L'Ens. Math., 12 (1966), 249-275. Zbl0181.40301MR36 #6921
  9. [9] G. POLYA and G. SZEGÖ, Problems and Theorems in Analysis, Springer-Verlag, New York, 1976. Zbl0338.00001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.