An L p -version of a theorem of D.A. Raikov

Gero Fendler

Annales de l'institut Fourier (1985)

  • Volume: 35, Issue: 1, page 125-135
  • ISSN: 0373-0956

Abstract

top
Let G be a locally compact group, for p ( 1 , ) let P f p ( G ) denote the closure of L 1 ( G ) in the convolution operators on L p ( G ) . Denote W p ( G ) the dual of P f p ( G ) which is contained in the space of pointwise multipliers of the Figa-Talamanca Herz space A p ( G ) . It is shown that on the unit sphere of W p ( G ) the σ ( W p , P f p ) topology and the strong A p -multiplier topology coincide.

How to cite

top

Fendler, Gero. "An $L^p$-version of a theorem of D.A. Raikov." Annales de l'institut Fourier 35.1 (1985): 125-135. <http://eudml.org/doc/74661>.

@article{Fendler1985,
abstract = {Let $G$ be a locally compact group, for $p\in (1,\infty )$ let $Pf_ p(G)$ denote the closure of $L^ 1(G)$ in the convolution operators on $L^ p(G)$. Denote $W_ p(G)$ the dual of $Pf_ p(G)$ which is contained in the space of pointwise multipliers of the Figa-Talamanca Herz space $A_ p(G)$. It is shown that on the unit sphere of $W_ p(G)$ the $\sigma (W_ p,Pf_ p)$ topology and the strong $A_ p$-multiplier topology coincide.},
author = {Fendler, Gero},
journal = {Annales de l'institut Fourier},
keywords = {multipliers; Figà-Talamanca Herz space},
language = {eng},
number = {1},
pages = {125-135},
publisher = {Association des Annales de l'Institut Fourier},
title = {An $L^p$-version of a theorem of D.A. Raikov},
url = {http://eudml.org/doc/74661},
volume = {35},
year = {1985},
}

TY - JOUR
AU - Fendler, Gero
TI - An $L^p$-version of a theorem of D.A. Raikov
JO - Annales de l'institut Fourier
PY - 1985
PB - Association des Annales de l'Institut Fourier
VL - 35
IS - 1
SP - 125
EP - 135
AB - Let $G$ be a locally compact group, for $p\in (1,\infty )$ let $Pf_ p(G)$ denote the closure of $L^ 1(G)$ in the convolution operators on $L^ p(G)$. Denote $W_ p(G)$ the dual of $Pf_ p(G)$ which is contained in the space of pointwise multipliers of the Figa-Talamanca Herz space $A_ p(G)$. It is shown that on the unit sphere of $W_ p(G)$ the $\sigma (W_ p,Pf_ p)$ topology and the strong $A_ p$-multiplier topology coincide.
LA - eng
KW - multipliers; Figà-Talamanca Herz space
UR - http://eudml.org/doc/74661
ER -

References

top
  1. [1] A. BENEDEK and R. PANZONE, The spaces Lp with mixed norm, Duke Math. J., 28 (1961), 301-324. Zbl0107.08902MR23 #A3451
  2. [2] F.F. BONSALL and J. DUNCAN, Numerical ranges of operators on normed spaces and of elements of normed algebras, London Math. Soc. Lecture Notes Series 2, Cambridge 1971. Zbl0207.44802MR44 #5779
  3. [3] M. COWLING, An application of Littlewood-Paley theory in harmonic analysis, Math. Ann., 241 (1979), 83-69. Zbl0399.43004MR81f:43003
  4. [4] M. COWLING and G. FENDLER, On representations in Banach spaces, Math. Ann., 266 (1984), 307-315. Zbl0508.46035MR85j:46083
  5. [5] P. EYMARD, Algèbres Ap et convoluteurs de Lp, Séminaire Bourbaki 22è année, 1969/1970, no. 367. Zbl0264.43006
  6. [6] E.E. GRANIRER, An application of the Radon Nikodym property in harmonic analysis, Bollentino U.M.I., (5) 18-B (1981), 663-671. Zbl0493.46018MR83b:43004
  7. [7] E.E. GRANIRER and M. LEINERT, On some topologies which coincide on the unit sphere of the Fourier-Stieltjes algebra B(G) and of the measure algebra M(G), Rocky Moutain J. of Math., 11 (1981), 459-472. Zbl0502.43004MR85f:43009
  8. [8] C. HERZ, Une généralisation de la notion de transformée de Fourier-Stieltjes, Ann. Inst. Fourier, Grenoble, 24-3 (1974), 145-157. Zbl0287.43006MR54 #13466
  9. [9] C. HERZ, Harmonic synthesis for subgroups, Ann. Inst. Fourier Grenoble, 23-3 (1973), 91-123. Zbl0257.43007MR50 #7956
  10. [10] G.C. ROTA, An “alternierende Verfahen” for general positive operators, Bull. A.M.S., 68 (1962), 95-102. Zbl0116.10403MR24 #A3671
  11. [11] E.M. STEIN, Topics in harmonic analysis related to the Littlewood-Paley theorem, Princeton University Press, 1970. Zbl0193.10502

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.