An L p -version of a theorem of D.A. Raikov

Gero Fendler

Annales de l'institut Fourier (1985)

  • Volume: 35, Issue: 1, page 125-135
  • ISSN: 0373-0956

Abstract

top
Let G be a locally compact group, for p ( 1 , ) let P f p ( G ) denote the closure of L 1 ( G ) in the convolution operators on L p ( G ) . Denote W p ( G ) the dual of P f p ( G ) which is contained in the space of pointwise multipliers of the Figa-Talamanca Herz space A p ( G ) . It is shown that on the unit sphere of W p ( G ) the σ ( W p , P f p ) topology and the strong A p -multiplier topology coincide.

How to cite

top

Fendler, Gero. "An $L^p$-version of a theorem of D.A. Raikov." Annales de l'institut Fourier 35.1 (1985): 125-135. <http://eudml.org/doc/74661>.

@article{Fendler1985,
abstract = {Let $G$ be a locally compact group, for $p\in (1,\infty )$ let $Pf_ p(G)$ denote the closure of $L^ 1(G)$ in the convolution operators on $L^ p(G)$. Denote $W_ p(G)$ the dual of $Pf_ p(G)$ which is contained in the space of pointwise multipliers of the Figa-Talamanca Herz space $A_ p(G)$. It is shown that on the unit sphere of $W_ p(G)$ the $\sigma (W_ p,Pf_ p)$ topology and the strong $A_ p$-multiplier topology coincide.},
author = {Fendler, Gero},
journal = {Annales de l'institut Fourier},
keywords = {multipliers; Figà-Talamanca Herz space},
language = {eng},
number = {1},
pages = {125-135},
publisher = {Association des Annales de l'Institut Fourier},
title = {An $L^p$-version of a theorem of D.A. Raikov},
url = {http://eudml.org/doc/74661},
volume = {35},
year = {1985},
}

TY - JOUR
AU - Fendler, Gero
TI - An $L^p$-version of a theorem of D.A. Raikov
JO - Annales de l'institut Fourier
PY - 1985
PB - Association des Annales de l'Institut Fourier
VL - 35
IS - 1
SP - 125
EP - 135
AB - Let $G$ be a locally compact group, for $p\in (1,\infty )$ let $Pf_ p(G)$ denote the closure of $L^ 1(G)$ in the convolution operators on $L^ p(G)$. Denote $W_ p(G)$ the dual of $Pf_ p(G)$ which is contained in the space of pointwise multipliers of the Figa-Talamanca Herz space $A_ p(G)$. It is shown that on the unit sphere of $W_ p(G)$ the $\sigma (W_ p,Pf_ p)$ topology and the strong $A_ p$-multiplier topology coincide.
LA - eng
KW - multipliers; Figà-Talamanca Herz space
UR - http://eudml.org/doc/74661
ER -

References

top
  1. [1] A. BENEDEK and R. PANZONE, The spaces Lp with mixed norm, Duke Math. J., 28 (1961), 301-324. Zbl0107.08902MR23 #A3451
  2. [2] F.F. BONSALL and J. DUNCAN, Numerical ranges of operators on normed spaces and of elements of normed algebras, London Math. Soc. Lecture Notes Series 2, Cambridge 1971. Zbl0207.44802MR44 #5779
  3. [3] M. COWLING, An application of Littlewood-Paley theory in harmonic analysis, Math. Ann., 241 (1979), 83-69. Zbl0399.43004MR81f:43003
  4. [4] M. COWLING and G. FENDLER, On representations in Banach spaces, Math. Ann., 266 (1984), 307-315. Zbl0508.46035MR85j:46083
  5. [5] P. EYMARD, Algèbres Ap et convoluteurs de Lp, Séminaire Bourbaki 22è année, 1969/1970, no. 367. Zbl0264.43006
  6. [6] E.E. GRANIRER, An application of the Radon Nikodym property in harmonic analysis, Bollentino U.M.I., (5) 18-B (1981), 663-671. Zbl0493.46018MR83b:43004
  7. [7] E.E. GRANIRER and M. LEINERT, On some topologies which coincide on the unit sphere of the Fourier-Stieltjes algebra B(G) and of the measure algebra M(G), Rocky Moutain J. of Math., 11 (1981), 459-472. Zbl0502.43004MR85f:43009
  8. [8] C. HERZ, Une généralisation de la notion de transformée de Fourier-Stieltjes, Ann. Inst. Fourier, Grenoble, 24-3 (1974), 145-157. Zbl0287.43006MR54 #13466
  9. [9] C. HERZ, Harmonic synthesis for subgroups, Ann. Inst. Fourier Grenoble, 23-3 (1973), 91-123. Zbl0257.43007MR50 #7956
  10. [10] G.C. ROTA, An “alternierende Verfahen” for general positive operators, Bull. A.M.S., 68 (1962), 95-102. Zbl0116.10403MR24 #A3671
  11. [11] E.M. STEIN, Topics in harmonic analysis related to the Littlewood-Paley theorem, Princeton University Press, 1970. Zbl0193.10502

NotesEmbed ?

top

You must be logged in to post comments.