On convolution operators with small support which are far from being convolution by a bounded measure

Edmond Granirer

Colloquium Mathematicae (1994)

  • Volume: 67, Issue: 1, page 33-60
  • ISSN: 0010-1354

Abstract

top
Let C V p ( F ) be the left convolution operators on L p ( G ) with support included in F and M p ( F ) denote those which are norm limits of convolution by bounded measures in M(F). Conditions on F are given which insure that C V p ( F ) , C V p ( F ) / M p ( F ) and C V p ( F ) / W are as big as they can be, namely have l as a quotient, where the ergodic space W contains, and at times is very big relative to M p ( F ) . Other subspaces of C V p ( F ) are considered. These improve results of Cowling and Fournier, Price and Edwards, Lust-Piquard, and others.

How to cite

top

Granirer, Edmond. "On convolution operators with small support which are far from being convolution by a bounded measure." Colloquium Mathematicae 67.1 (1994): 33-60. <http://eudml.org/doc/210262>.

@article{Granirer1994,
abstract = {Let $CV_p(F)$ be the left convolution operators on $L^p(G)$ with support included in F and $M_p(F)$ denote those which are norm limits of convolution by bounded measures in M(F). Conditions on F are given which insure that $CV_p(F)$, $CV_p(F)/M_p(F)$ and $CV_p(F)/W$ are as big as they can be, namely have $l^∞$ as a quotient, where the ergodic space W contains, and at times is very big relative to $M_p(F)$. Other subspaces of $CV_p(F)$ are considered. These improve results of Cowling and Fournier, Price and Edwards, Lust-Piquard, and others.},
author = {Granirer, Edmond},
journal = {Colloquium Mathematicae},
keywords = {convolution operators; locally compact groups; bounded measure},
language = {eng},
number = {1},
pages = {33-60},
title = {On convolution operators with small support which are far from being convolution by a bounded measure},
url = {http://eudml.org/doc/210262},
volume = {67},
year = {1994},
}

TY - JOUR
AU - Granirer, Edmond
TI - On convolution operators with small support which are far from being convolution by a bounded measure
JO - Colloquium Mathematicae
PY - 1994
VL - 67
IS - 1
SP - 33
EP - 60
AB - Let $CV_p(F)$ be the left convolution operators on $L^p(G)$ with support included in F and $M_p(F)$ denote those which are norm limits of convolution by bounded measures in M(F). Conditions on F are given which insure that $CV_p(F)$, $CV_p(F)/M_p(F)$ and $CV_p(F)/W$ are as big as they can be, namely have $l^∞$ as a quotient, where the ergodic space W contains, and at times is very big relative to $M_p(F)$. Other subspaces of $CV_p(F)$ are considered. These improve results of Cowling and Fournier, Price and Edwards, Lust-Piquard, and others.
LA - eng
KW - convolution operators; locally compact groups; bounded measure
UR - http://eudml.org/doc/210262
ER -

References

top
  1. [BL] Y. Benyamini and P. K. Lin, Norm one multipliers on L p ( G ) , Ark. Mat. 24 (1986), 159-173. 
  2. [BE] B. Brainerd and R. E. Edwards, Linear operators which commute with translations. Part I: Representation theorems, J. Austral. Math. Soc. 6 (1966), 289-327. Zbl0154.39202
  3. [Ch1] C. Chou, Weakly almost periodic functions and Fourier-Stieltjes algebras of locally compact groups, Trans. Amer. Math. Soc. 274 (1982), 141-157. Zbl0505.43004
  4. [Ch2] C. Chou, Topological invariant means on the von Neumann algebra VN(G), ibid. 273 (1982), 207-229. Zbl0507.22007
  5. [Co] H. S. Collins, Strict, weighted, and mixed topologies and applications, Adv. in Math. 19 (1976), 207-237. Zbl0347.46023
  6. [Cow] M. Cowling, An application of Littlewood-Paley theory in harmonic analysis, Math. Ann. 241 (1979), 83-96. Zbl0399.43004
  7. [CF] M. Cowling and J. J. F. Fournier, Inclusions and noninclusion of spaces of convolution operators, Trans. Amer. Math. Soc. 221 (1976), 56-95. Zbl0331.43007
  8. [De1] J. Delaporte, Convoluteurs continus et topologie stricte, thèse, Université Lausanne, 1989. 
  9. [De2] J. Delaporte, Convoluteurs continus et groupes quotients, C. R. Math. Rep. Acad. Sci. Canada 14 (1992), 167-172. 
  10. [Der] A. Derighetti, A propos des convoluteurs d'un groupe quotient, Bull. Sci. Math. 107 (1983), 3-23. Zbl0522.43003
  11. [DU] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1977. 
  12. [Do] Y. Domar, Harmonic analysis based on certain commutative Banach algebras, Acta Math. 96 (1956), 1-66. Zbl0071.11302
  13. [DR1] C. F. Dunkl and D. E. Ramirez, L p multipliers on compact groups, preprint. 
  14. [DR2] C. F. Dunkl and D. E. Ramirez, C * -algebras generated by Fourier-Stieltjes transforms, Trans. Amer. Math. Soc. 164 (1972), 435-441. Zbl0211.15903
  15. [EP] R. E. Edwards and J. F. Price, A naively constructive approach to boundedness principles with applications to harmonic analysis, Enseign. Math. 16 (1970), 255-296. Zbl0208.15503
  16. [Ey] P. Eymard, Algèbres A p et convoluteurs de L p , Séminaire Bourbaki, 22e année, 1969/70, no. 367. 
  17. [Fe] G. Fendler, An L p -version of a theorem of D. A. Raikov, Ann. Inst. Fourier (Grenoble) 35 (1) (1985), 125-135. 
  18. [FG] A. Figà-Talamanca and G. I. Gaudry, Multipliers and sets of uniqueness of L p , Michigan Math. J. 17 (1970), 179-191. Zbl0197.40103
  19. [GI] G. I. Gaudry and I. R. Inglis, Approximation of multipliers, Proc. Amer. Math. Soc. 44 (1974), 381-384. Zbl0287.42007
  20. [GMc] C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Springer, New York, 1979. Zbl0439.43001
  21. [Gr1] E. E. Granirer, On some spaces of linear functionals on the algebras A p ( G ) for locally compact groups, Colloq. Math. 52 (1987), 119-132. Zbl0649.43004
  22. [Gr2] E. E. Granirer, Geometric and topological properties of certain w * compact convex subsets of double duals of Banach spaces, which arise from the study of invariant means, Illinois J. Math. 30 (1986), 148-174. Zbl0606.46006
  23. [Gr3] E. E. Granirer, On Baire measures on D-topological spaces, Fund. Math. 60 (1967), 1-22. Zbl0146.12204
  24. [Gr4] E. E. Granirer, On convolution operators which are far from being convolution by a bounded measure. Expository memoir, C. R. Math. Rep. Acad. Sci. Canada 13 (1991), 187-204. Zbl0791.43003
  25. [Ha] R. Haydon, A non-reflexive Grothendieck space that does not contain l , Israel J. Math. 40 (1981), 65-73. 
  26. [Hz1] C. Herz, Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble) 23 (3) (1973), 91-123. Zbl0257.43007
  27. [Hz2] C. Herz, Une généralisation de la notion de transformée de Fourier-Stieltjes, ibid. 24 (3) (1974), 145-157. Zbl0287.43006
  28. [Hz3] C. Herz, The theory of p-spaces with an application to convolution operators, Trans. Amer. Math. Soc. 154 (1971), 69-82. Zbl0216.15606
  29. [HR] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vols. I, II, Springer, 1970. 
  30. [Ka1] J.-P. Kahane et R. Salem, Sur les ensembles linéaires ne portant pas de pseudomesures, C. R. Acad. Sci. Paris 243 (1956), 1185-1187. 
  31. [Ka2] J.-P. Kahane, Sur les réarrangements de fonctions de la classe A, Studia Math. 31 (1968), 287-293. Zbl0177.42202
  32. [Ka3] J.-P. Kahane, Séries de Fourier Absolument Convergentes, Springer, 1970. Zbl0195.07602
  33. [Ko] T. W. Körner, A pseudofunction on a Helson set. I, Astérisque 5 (1973), 3-224. Zbl0281.43004
  34. [La] R. Larsen, An Introduction to the Theory of Multipliers, Springer, 1971. 
  35. [LT] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Vol. I, Springer, 1977. Zbl0362.46013
  36. [LR] T. S. Liu and A. van Rooij, Invariant means on a locally compact group, Monatsh. Math. 78 (1974), 356-359. 
  37. [Lo] L. H. Loomis, The spectral characterization of a class of almost periodic functions, Ann. of Math. 72 (1960), 362-368. Zbl0094.05801
  38. [P1] F. Lust-Piquard, Produits tensoriels projectifs d'espaces de Banach faiblement sequentiellement complets, Colloq. Math. 36 (1976), 255-267. Zbl0356.46058
  39. [P2] F. Lust-Piquard, Means on C V p ( G ) -subspaces of C V p ( G ) with RNP and Schur property, Ann. Inst. Fourier (Grenoble) 39 (1989), 969-1006. Zbl0675.43001
  40. [P3] F. Lust-Piquard, Eléments ergodiques et totalement ergodiques dans L ( Γ ) , Studia Math. 69 (1981), 191-225. Zbl0476.43001
  41. [Mc] O. C. McGehee, Helson sets in T n , in: Conference on Harmonic Analysis, College Park, Maryland, 1971, Lecture Notes in Math. 266, Springer, 1972, 229-237. 
  42. [Me] Y. Meyer, Recent advances in spectral synthesis, ibid., 239-253. 
  43. [Ne] C. Nebbia, Convolution operators on the group of isometries of a homogeneous tree, Boll. Un. Mat. Ital. C (6) 2 (1983), 277-292. Zbl0544.43003
  44. [Pa] A. L. T. Paterson, Amenability, Math. Surveys Monographs 29, Amer. Math. Soc., 1988. 
  45. [Pi] J. P. Pier, Amenable Locally Compact Groups, Wiley, 1984. Zbl0597.43001
  46. [Pr] J. F. Price, Some strict inclusions between spaces of L p -multipliers, Trans. Amer. Math. Soc. 152 (1970), 321-330. Zbl0216.14802
  47. [Ro] H. P. Rosenthal, Some recent discoveries in the isomorphic theory of Banach spaces, Bull. Amer. Math. Soc. 84 (1978), 803-831. Zbl0391.46016
  48. [Ru1] W. Rudin, Fourier Analysis on Groups, Wiley, 1960. 
  49. [Ru2] W. Rudin, Functional Analysis, McGraw-Hill, 1973. 
  50. [Sa] E. Saab, Some characterizations of weak Radon-Nikodym sets, Proc. Amer. Math. Soc. 86 (1982), 307-311. Zbl0494.46047
  51. [S] S. Saeki, Helson sets which disobey spectral synthesis, ibid. 47 (1975), 371-377. Zbl0297.43007
  52. [St] E. Stein, On limits of sequences of operators, Ann. of Math. 74 (1961), 140-170. Zbl0103.08903
  53. [T] M. Talagrand, Un nouveau C(K) qui possède la propriété de Grothendieck, Israel J. Math. 37 (1980), 181-191. 
  54. [Wo1] G. S. Woodward, Une classe d'ensembles épars, C. R. Acad. Sci. Paris 274 (1972), 221-223. Zbl0228.43009
  55. [Wo2] G. S. Woodward, Invariant means and ergodic sets in Fourier analysis, Pacific J. Math. 54 (1974), 281-299. Zbl0307.43006
  56. [Wo3] G. S. Woodward, The generalized almost periodic part of an ergodic function, Studia Math. 50 (1974), 103-116. Zbl0283.42019

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.