Sidon sets and Riesz products
Annales de l'institut Fourier (1985)
- Volume: 35, Issue: 1, page 137-148
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBourgain, Jean. "Sidon sets and Riesz products." Annales de l'institut Fourier 35.1 (1985): 137-148. <http://eudml.org/doc/74662>.
@article{Bourgain1985,
abstract = {Let $G$ be a compact abelian group and $\Gamma $ the dual group. It is shown that if $\Delta \subset \Gamma $ is a Sidon set, then the interpolating measures on $\Lambda $ can be obtained as mean of Riesz products. If $\Lambda $ is a Sidon set tending to infinity, $\Lambda $ is of first type. Our approach yields in fact elementary proofs of certain characterizations of Sidonicity obtained in G. Pisier, C.R.A.S., Paris Ser. A, 286 (1978), 1003–1006 – Math. Anal. and Appl., Part B, Advances in Math., Suppl. Sts. vol. 7, 685-726 – preprint, using random Fourier series.},
author = {Bourgain, Jean},
journal = {Annales de l'institut Fourier},
keywords = {Sidon sets; quasi-independent sets; Riesz products},
language = {eng},
number = {1},
pages = {137-148},
publisher = {Association des Annales de l'Institut Fourier},
title = {Sidon sets and Riesz products},
url = {http://eudml.org/doc/74662},
volume = {35},
year = {1985},
}
TY - JOUR
AU - Bourgain, Jean
TI - Sidon sets and Riesz products
JO - Annales de l'institut Fourier
PY - 1985
PB - Association des Annales de l'Institut Fourier
VL - 35
IS - 1
SP - 137
EP - 148
AB - Let $G$ be a compact abelian group and $\Gamma $ the dual group. It is shown that if $\Delta \subset \Gamma $ is a Sidon set, then the interpolating measures on $\Lambda $ can be obtained as mean of Riesz products. If $\Lambda $ is a Sidon set tending to infinity, $\Lambda $ is of first type. Our approach yields in fact elementary proofs of certain characterizations of Sidonicity obtained in G. Pisier, C.R.A.S., Paris Ser. A, 286 (1978), 1003–1006 – Math. Anal. and Appl., Part B, Advances in Math., Suppl. Sts. vol. 7, 685-726 – preprint, using random Fourier series.
LA - eng
KW - Sidon sets; quasi-independent sets; Riesz products
UR - http://eudml.org/doc/74662
ER -
References
top- [1] J. BOURGAIN, Propriétés de décomposition pour les ensembles de Sidon, Bull. Soc. Math. France, 111 (1983), 421-428. Zbl0546.43006MR86f:43007
- [2] M. DECHAMPS-GONDIM, Ensembles de Sidon topologiques, Ann. Inst. Fourier, Grenoble, 22-3 (1972), 51-79. Zbl0273.43010MR49 #5731
- [3] J.M. LOPEZ, K.A. ROSS, Sidon Sets, LN Pure and Appl. Math., No 13, M. Dekker, New York, 1975. Zbl0351.43008MR55 #13173
- [4] G. PISIER, Ensembles de Sidon et processus gaussiens, C.R.A.S, Paris, Ser. A, 286 (1978), 1003-1006. Zbl0377.43007
- [5] G. PISIER, De nouvelles caractérisations des ensembles de Sidon, Math. Anal. and Appl., Part B, Advances in Math., Suppl. Sts. Vol. 7, 685-726. Zbl0468.43008MR82m:43011
- [6] G. PISIER, Conditions d'entropie et caractérisations arithmétiques des ensembles de Sidon, preprint. Zbl0539.43004
- [7] POLYA-SZEGO, Inequalities.
- [8] W. RUDIN, Tigonometric series with gaps, J. Math. Mech., 9 (1960), 203-227. Zbl0091.05802MR22 #6972
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.