Fine topology and quasilinear elliptic equations
Juha Heinonen; Terro Kilpeläinen; Olli Martio
Annales de l'institut Fourier (1989)
- Volume: 39, Issue: 2, page 293-318
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topHeinonen, Juha, Kilpeläinen, Terro, and Martio, Olli. "Fine topology and quasilinear elliptic equations." Annales de l'institut Fourier 39.2 (1989): 293-318. <http://eudml.org/doc/74832>.
@article{Heinonen1989,
abstract = {It is shown that the $(1,p)$-fine topology defined via a Wiener criterion is the coarsest topology making all supersolutions to the $p$-Laplace equation\begin\{\}\{\rm div\}\,(\vert \nabla u\vert ^\{p-2\} \nabla u)=0\end\{\}continuous. Fine limits of quasiregular and BLD mappings are also studied.},
author = {Heinonen, Juha, Kilpeläinen, Terro, Martio, Olli},
journal = {Annales de l'institut Fourier},
keywords = {quasilinear; fine topology; Wiener criterion; supersolutions; p-Laplace equation; continuous; Fine limits},
language = {eng},
number = {2},
pages = {293-318},
publisher = {Association des Annales de l'Institut Fourier},
title = {Fine topology and quasilinear elliptic equations},
url = {http://eudml.org/doc/74832},
volume = {39},
year = {1989},
}
TY - JOUR
AU - Heinonen, Juha
AU - Kilpeläinen, Terro
AU - Martio, Olli
TI - Fine topology and quasilinear elliptic equations
JO - Annales de l'institut Fourier
PY - 1989
PB - Association des Annales de l'Institut Fourier
VL - 39
IS - 2
SP - 293
EP - 318
AB - It is shown that the $(1,p)$-fine topology defined via a Wiener criterion is the coarsest topology making all supersolutions to the $p$-Laplace equation\begin{}{\rm div}\,(\vert \nabla u\vert ^{p-2} \nabla u)=0\end{}continuous. Fine limits of quasiregular and BLD mappings are also studied.
LA - eng
KW - quasilinear; fine topology; Wiener criterion; supersolutions; p-Laplace equation; continuous; Fine limits
UR - http://eudml.org/doc/74832
ER -
References
top- [AH] D. R. ADAMS and L. I. HEDBERG, Inclusion relations among fine topologies in non-linear potential theory, Indiana Univ. Math. J., 33 (1984), 117-126. Zbl0545.31011MR85c:31011
- [AL] D. R. ADAMS and J. L. LEWIS, Fine and quasi connectedness in nonlinear potential theory, Ann. Inst. Fourier, Grenoble, 35-1 (1985), 57-73. Zbl0545.31012MR86h:31009
- [AM] D. R. ADAMS and N. G. MEYERS, Thinness and Wiener criteria for non-linear potentials, Indiana Univ. Math. J., 22 (1972), 169-197. Zbl0244.31012MR47 #5272
- [B] M. BRELOT, On topologies and boundaries in potential theory, Lecture Notes in Math., 175, Springer-Verlag, 1971. Zbl0222.31014MR43 #7654
- [D] J. L. DOOB, Classical potential theory and its probabilistic counterpart, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1984. Zbl0549.31001MR85k:31001
- [F1] B. FUGLEDE, The quasi topology associated with a countable subadditive set function, Ann. Inst. Fourier, Grenoble, 21-1, (1971), 123-169. Zbl0197.19401
- [F2] B. FUGLEDE, Connexion en topologie fine et balayage des mesures, Ann. Inst. Fourier, Grenoble, 21-3 (1971), 227-244. Zbl0208.13802MR49 #9241
- [F3] B. FUGLEDE, Asymptotic paths for subharmonic functions and polygonal connectedness of fine domains, Séminaire de Théorie du Potentiel, Paris, n° 5, Lecture Notes in Math., 814, Springer-Verlag, 1980, pp. 97-116. Zbl0445.31003MR82b:31006
- [F4] B. FUGLEDE, Value distribution of harmonic and finely harmonic morphisms and applications in complex analysis, Ann. Acad. Sci. Fenn. Ser. A I Math., 11 (1986), 111-135. Zbl0607.31002MR87e:30037
- [GLM1] S. GRANLUND, P. LINDQVIST and O. MARTIO, Conformally invariant variational integrals, Trans. Amer. Math. Soc., 277 (1983), 43-73. Zbl0518.30024MR84f:30030
- [GLM2] S. GRANLUND, P. LINDQVIST and O. MARTIO, Note on the PWB-method in the non-linear case, Pacific J. Math., 125 (1986), 381-395. Zbl0633.31004MR88a:31014
- [HW] L. I. HEDBERG and Th. H. WOLFF, Thin sets in nonlinear potential theory, Ann. Inst. Fourier, Grenoble, 33-4 (1983), 161-187. Zbl0508.31008MR85f:31015
- [HK1] J. HEINONEN and T. KILPELÄINEN, A-superharmonic functions and supersolutions of degenerate elliptic equations, Ark. Mat., 26 (1988), 87-105. Zbl0652.31006MR89k:35079
- [HK2] J. HEINONEN and T. KILPELÄINEN, Polar sets for supersolutions of degenerate elliptic equations, Math. Scand. (to appear). Zbl0706.31015
- [HK3] J. HEINONEN and T. KILPELÄINEN, On the Wiener criterion and quasilinear obstacle problems, Trans. Amer. Math. Soc., 310 (1988), 239-255. Zbl0711.35052MR89m:35091
- [K] T. KILPELÄINEN, Potential theory for supersolutions of degenerate elliptic equations (to appear). Zbl0688.31005
- [L] P. LINDQVIST, On the definition and properties of p-superharmonic functions, J. Reine Angew. Math., 365 (1986), 67-79. Zbl0572.31004MR87e:31011
- [LM] P. LINDQVIST and O. MARTIO, Two theorems of N. Wiener for solutions of quasilinear elliptic equations, Acta Math., 155 (1985), 153-171. Zbl0607.35042MR87g:35074
- [LSW] W. LITTMAN, G. STAMPACCHIA and H. F. WEINBERGER, Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa (III), 17 (1963), 43-77. Zbl0116.30302MR28 #4228
- [LMZ] J. LUKEŠ, J. MALÝ and L. ZAJÍčEK, Fine topology methods in real analysis and potential theory, Lecture Notes in Math., 1189, Springer-Verlag, 1986. Zbl0607.31001MR89b:31001
- [MRV1] O. MARTIO, S. RICKMAN and J. VÄISÄLÄ, Definitions for quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I Math., 448 (1969), 1-40. Zbl0189.09204MR41 #3756
- [MRV2] O. MARTIO, S. RICKMAN and J. VÄISÄLÄ, Distortion and singularities of quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I Math., 464 (1970), 1-13. Zbl0197.05702
- [MS] O. MARTIO and J. SARVAS, Density conditions in the n-capacity, Indiana Univ. Math. J., 26 (1977), 761-776. Zbl0365.30014MR57 #16582
- [MV] O. MARTIO and J. VÄISÄLÄ, Elliptic equations and maps of bounded length distortion, Math. Ann., 282, (1988), 423-443. Zbl0632.35021MR89m:35062
- [M] N. G. MEYERS, Continuity properties of potentials, Duke Math. J., 42 (1975), 157-166. Zbl0334.31004MR51 #3477
- [R] Yu. G. RESHETNYAK, The concept of capacity in the theory of functions with generalized derivatives, Sibirsk. Mat. Zh., 10 (1969), 1109-1138. (Russian). Zbl0199.20701MR43 #2234
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.