Killing divisor classes by algebraisation

Alexandru Buium

Annales de l'institut Fourier (1985)

  • Volume: 35, Issue: 2, page 107-115
  • ISSN: 0373-0956

Abstract

top
It is proved that any isolated singularity of complete intersection has an algebraisation whose divisor class group is finitely generated.

How to cite

top

Buium, Alexandru. "Killing divisor classes by algebraisation." Annales de l'institut Fourier 35.2 (1985): 107-115. <http://eudml.org/doc/74671>.

@article{Buium1985,
abstract = {It is proved that any isolated singularity of complete intersection has an algebraisation whose divisor class group is finitely generated.},
author = {Buium, Alexandru},
journal = {Annales de l'institut Fourier},
keywords = {finitely generated divisor class group; isolated singularity of complete intersection},
language = {eng},
number = {2},
pages = {107-115},
publisher = {Association des Annales de l'Institut Fourier},
title = {Killing divisor classes by algebraisation},
url = {http://eudml.org/doc/74671},
volume = {35},
year = {1985},
}

TY - JOUR
AU - Buium, Alexandru
TI - Killing divisor classes by algebraisation
JO - Annales de l'institut Fourier
PY - 1985
PB - Association des Annales de l'Institut Fourier
VL - 35
IS - 2
SP - 107
EP - 115
AB - It is proved that any isolated singularity of complete intersection has an algebraisation whose divisor class group is finitely generated.
LA - eng
KW - finitely generated divisor class group; isolated singularity of complete intersection
UR - http://eudml.org/doc/74671
ER -

References

top
  1. [1] A. BUIUM, A note on the class group of surfaces in 3-space, to appear in Journal of Pure and Applied Algebra. Zbl0584.14026
  2. [2] P. DELIGNE, Théorie de Hodge II, IHES Publ. Math., 40 (1971), 5-58. Zbl0219.14007MR58 #16653a
  3. [3] W. FULTON and R. LAZARSFELD, Connectivity and its applications in algebraic geometry, in Algebraic Geometry, Lecture Notes in Math. 862 (Spriger, Berlin-Heidelberg-New York, 1981). Zbl0484.14005MR83i:14002
  4. [4] H. GRAUERT and O. RIEMENSCHNEIDER, Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen, Invent. Math., 11 (1970), 263-292. Zbl0202.07602MR46 #2081
  5. [5] A. GROTHENDIECK, Cohomologie des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux, SGA II (North-Holland, Paris-Amsterdam, 1969). 
  6. [6] R. HARTSHORNE, Algebraic Geometry (Springer, New York-Heidelberg Berlin, 1977). Zbl0367.14001MR57 #3116
  7. [7] J. KOLLÀR, letter 1983. 
  8. [8] K. LAMOTKE, The topology of complex projective varieties after S. Lefschetz, Topology, 20 (1981), 15-51. Zbl0445.14010MR81m:14019
  9. [9] J. N. MATHER, Stability of C∞ mappings III, IHES Publ. Math., 35 (1969), 127-156. Zbl0159.25001
  10. [10] B. MOISHEZON, Algebraic cohomology classes on algebraic manifolds (in russian), Izvestia Akad. Nauk SSSR, 31 (1967), 225-268. 
  11. [11] N. BOURBAKI, Algèbre commutative, Chapitre 7: Diviseurs (Hermann, Paris, 1965). Zbl0141.03501

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.