The third Betti number of a positively pinched riemannian six manifold
Annales de l'institut Fourier (1986)
- Volume: 36, Issue: 2, page 83-92
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topSeaman, Walter. "The third Betti number of a positively pinched riemannian six manifold." Annales de l'institut Fourier 36.2 (1986): 83-92. <http://eudml.org/doc/74718>.
@article{Seaman1986,
abstract = {We prove that if the sectional curvature, $K$, of a compact 6-manifold without boundary satisfies $1\ge K>(4\sqrt\{10\}- 4)/(4\sqrt\{10\}+23)\cong .2426,$ then its third (real) Betti number is zero.},
author = {Seaman, Walter},
journal = {Annales de l'institut Fourier},
keywords = {sectional curvature; Betti number},
language = {eng},
number = {2},
pages = {83-92},
publisher = {Association des Annales de l'Institut Fourier},
title = {The third Betti number of a positively pinched riemannian six manifold},
url = {http://eudml.org/doc/74718},
volume = {36},
year = {1986},
}
TY - JOUR
AU - Seaman, Walter
TI - The third Betti number of a positively pinched riemannian six manifold
JO - Annales de l'institut Fourier
PY - 1986
PB - Association des Annales de l'Institut Fourier
VL - 36
IS - 2
SP - 83
EP - 92
AB - We prove that if the sectional curvature, $K$, of a compact 6-manifold without boundary satisfies $1\ge K>(4\sqrt{10}- 4)/(4\sqrt{10}+23)\cong .2426,$ then its third (real) Betti number is zero.
LA - eng
KW - sectional curvature; Betti number
UR - http://eudml.org/doc/74718
ER -
References
top- [1] S. ALOFF and N. R. WALLACH, An Infinite Family of Distinct 7-Manifolds Admitting Positively Curved Riemannian Metrics, Bull. A.M.S., 81 (1975), 93-97. Zbl0362.53033MR51 #6851
- [2] M. BERGER, Sur quelques variétés riemanniennes suffisamment pincées, Bull. Soc. Math. Fr., 88 (1960), 57-71. Zbl0096.15503MR24 #A3606
- [3] M. BERGER, Sur les variétés riemanniennes pincées just au-dessous de 1/4, Ann. Inst. Fourier, Grenoble, 33-2 (1983), 135-150. Zbl0497.53044MR85d:53017
- [4] J. DADOK and R. HARVEY, Calibrations on R6, Duke Math. J., 50 (1983), 1231-1243. Zbl0535.49030MR85a:53056
- [5] S. GOLDBERG, Curvature and Homology, Dover Publications, 1962, 1982. Zbl0105.15601
- [6] D. HULIN, Le second nombre de Betti d'une variété riemannienne (1/4 - ε) - pincée de dimension 4, Ann. Inst. Fourier, Grenoble, 33-2 (1983), 167-182. Zbl0486.53033MR85f:53045
- [7] F. MORGAN, The Exterior Algebra ΛkRn and Area Minimization, Linear Algebra and its Applications, 66 (1985), 1-28. Zbl0585.49029MR86i:53036
- [8] W. POOR, Differential Geometric Structures, McGraw Hill Book Co., 1981. Zbl0493.53027MR83k:53002
- [9] N. R. WALLACH, Compact homogeneous Riemannian manifolds with strictly positive curvature, Ann. Math., 96 (1972), 277-295. Zbl0261.53033MR46 #6243
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.