The third Betti number of a positively pinched riemannian six manifold

Walter Seaman

Annales de l'institut Fourier (1986)

  • Volume: 36, Issue: 2, page 83-92
  • ISSN: 0373-0956

Abstract

top
We prove that if the sectional curvature, K , of a compact 6-manifold without boundary satisfies 1 K > ( 4 10 - 4 ) / ( 4 10 + 23 ) . 2426 , then its third (real) Betti number is zero.

How to cite

top

Seaman, Walter. "The third Betti number of a positively pinched riemannian six manifold." Annales de l'institut Fourier 36.2 (1986): 83-92. <http://eudml.org/doc/74718>.

@article{Seaman1986,
abstract = {We prove that if the sectional curvature, $K$, of a compact 6-manifold without boundary satisfies $1\ge K&gt;(4\sqrt\{10\}- 4)/(4\sqrt\{10\}+23)\cong .2426,$ then its third (real) Betti number is zero.},
author = {Seaman, Walter},
journal = {Annales de l'institut Fourier},
keywords = {sectional curvature; Betti number},
language = {eng},
number = {2},
pages = {83-92},
publisher = {Association des Annales de l'Institut Fourier},
title = {The third Betti number of a positively pinched riemannian six manifold},
url = {http://eudml.org/doc/74718},
volume = {36},
year = {1986},
}

TY - JOUR
AU - Seaman, Walter
TI - The third Betti number of a positively pinched riemannian six manifold
JO - Annales de l'institut Fourier
PY - 1986
PB - Association des Annales de l'Institut Fourier
VL - 36
IS - 2
SP - 83
EP - 92
AB - We prove that if the sectional curvature, $K$, of a compact 6-manifold without boundary satisfies $1\ge K&gt;(4\sqrt{10}- 4)/(4\sqrt{10}+23)\cong .2426,$ then its third (real) Betti number is zero.
LA - eng
KW - sectional curvature; Betti number
UR - http://eudml.org/doc/74718
ER -

References

top
  1. [1] S. ALOFF and N. R. WALLACH, An Infinite Family of Distinct 7-Manifolds Admitting Positively Curved Riemannian Metrics, Bull. A.M.S., 81 (1975), 93-97. Zbl0362.53033MR51 #6851
  2. [2] M. BERGER, Sur quelques variétés riemanniennes suffisamment pincées, Bull. Soc. Math. Fr., 88 (1960), 57-71. Zbl0096.15503MR24 #A3606
  3. [3] M. BERGER, Sur les variétés riemanniennes pincées just au-dessous de 1/4, Ann. Inst. Fourier, Grenoble, 33-2 (1983), 135-150. Zbl0497.53044MR85d:53017
  4. [4] J. DADOK and R. HARVEY, Calibrations on R6, Duke Math. J., 50 (1983), 1231-1243. Zbl0535.49030MR85a:53056
  5. [5] S. GOLDBERG, Curvature and Homology, Dover Publications, 1962, 1982. Zbl0105.15601
  6. [6] D. HULIN, Le second nombre de Betti d'une variété riemannienne (1/4 - ε) - pincée de dimension 4, Ann. Inst. Fourier, Grenoble, 33-2 (1983), 167-182. Zbl0486.53033MR85f:53045
  7. [7] F. MORGAN, The Exterior Algebra ΛkRn and Area Minimization, Linear Algebra and its Applications, 66 (1985), 1-28. Zbl0585.49029MR86i:53036
  8. [8] W. POOR, Differential Geometric Structures, McGraw Hill Book Co., 1981. Zbl0493.53027MR83k:53002
  9. [9] N. R. WALLACH, Compact homogeneous Riemannian manifolds with strictly positive curvature, Ann. Math., 96 (1972), 277-295. Zbl0261.53033MR46 #6243

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.