p -adic interpolation of logarithmic derivatives associated to certain Lubin-Tate formal groups

John L. Boxall

Annales de l'institut Fourier (1986)

  • Volume: 36, Issue: 3, page 1-27
  • ISSN: 0373-0956

Abstract

top
The purpose of this paper is to generalize, to certain commutative formal groups of dimension one and height greater than one defined over the ring of integers of a finite extension of Q p , some results on p -adic interpolation developed by Kubota, Leopoldt, Iwasawa, Mazur, Katz and others notably for the multiplicative group G ^ m , and which they used to construct p -adic L -functions.

How to cite

top

Boxall, John L.. "$p$-adic interpolation of logarithmic derivatives associated to certain Lubin-Tate formal groups." Annales de l'institut Fourier 36.3 (1986): 1-27. <http://eudml.org/doc/74724>.

@article{Boxall1986,
abstract = {The purpose of this paper is to generalize, to certain commutative formal groups of dimension one and height greater than one defined over the ring of integers of a finite extension of $\{\bf Q\}_ p$, some results on $p$-adic interpolation developed by Kubota, Leopoldt, Iwasawa, Mazur, Katz and others notably for the multiplicative group $\{\hat\{\bf G\}\}_ m$, and which they used to construct $p$-adic $L$-functions.},
author = {Boxall, John L.},
journal = {Annales de l'institut Fourier},
keywords = {logarithmic derivatives; commutative formal groups; p-adic interpolation; p-adic L-functions},
language = {eng},
number = {3},
pages = {1-27},
publisher = {Association des Annales de l'Institut Fourier},
title = {$p$-adic interpolation of logarithmic derivatives associated to certain Lubin-Tate formal groups},
url = {http://eudml.org/doc/74724},
volume = {36},
year = {1986},
}

TY - JOUR
AU - Boxall, John L.
TI - $p$-adic interpolation of logarithmic derivatives associated to certain Lubin-Tate formal groups
JO - Annales de l'institut Fourier
PY - 1986
PB - Association des Annales de l'Institut Fourier
VL - 36
IS - 3
SP - 1
EP - 27
AB - The purpose of this paper is to generalize, to certain commutative formal groups of dimension one and height greater than one defined over the ring of integers of a finite extension of ${\bf Q}_ p$, some results on $p$-adic interpolation developed by Kubota, Leopoldt, Iwasawa, Mazur, Katz and others notably for the multiplicative group ${\hat{\bf G}}_ m$, and which they used to construct $p$-adic $L$-functions.
LA - eng
KW - logarithmic derivatives; commutative formal groups; p-adic interpolation; p-adic L-functions
UR - http://eudml.org/doc/74724
ER -

References

top
  1. [1] P. CASSOU-NOGUES, Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta p-adiques, Inventiones Math., 51 (1979), 29-59. Zbl0408.12015MR80h:12009b
  2. [2] R.F. COLEMAN, Division values in local fields, Inventiones Math., 53 (1979), 91-116. Zbl0429.12010MR81g:12017
  3. [3] K. IWASAWA, Lectures on p-adic L-functions, Annals of Math. Studies, 74 P.U.P. (1972). Zbl0236.12001MR50 #12974
  4. [4] E.E. KUMMER, Uber eine allgemeine Eigenschaft der rationale Entwicklungscoefficienten eines bestimmten Gattung analytischer Functionen, Crelle's J., 41 (1851) 368-372, (= collected works vol. 1, pp. 358-362, Springer-Verlag (1975)). 
  5. [5] T. KUBOTA and H.W. LEOPOLDT, Eine p-adische Theorie der Zetawerte, Crelle's J, 214/215 (1964), 328-339. Zbl0186.09103MR29 #1199
  6. [6] N. KATZ, Formal groups and p-adic interpolation, Astérisque, 41-42 (1977) 55-65. Zbl0351.14024MR56 #319
  7. [7] N. KATZ, Divisibilities, congruences and Cartier duality, J. Fac. Sci. Univ. Tokyo, Ser. 1 A, 28 (1982), 667-678. Zbl0559.14032
  8. [8] S. LANG, Cyclotomic fields, Graduate texts in Math, Springer-Verlag (1978). Zbl0395.12005MR58 #5578
  9. [9] H.W. LEOPOLDT, Eine p-adiche Theorie der Zetewerte II, Crelle's J., 274/275 (1975), 225-239. 
  10. [10] S. LICHTENBAUM, On p-adic L-functions associated to elliptic curves, Inventiones Math., 56 (1980), 19-55. Zbl0425.12017MR81j:12013
  11. [11] J. LUBIN, One-parameter formal Lie groups over p-adic integer rings, Annals of Math., 80 (1964), 464-484. Zbl0135.07003MR29 #5827
  12. [12] B. MAZUR and P. SWINNERTON-DYER, Arithmetic of Weil curves, Inventiones Math., 25 (1974), 1-61. Zbl0281.14016MR50 #7152
  13. [13] K. RUBIN, Congruences for special values of L-functions of elliptic curves with complex multiplication, Inventiones Math., 71 (1983), 339-364. Zbl0513.14012MR84h:12018
  14. [14] J.P. SERRE, Formes modulaires et fonction zêta p-adiques, In Springer Lecture Notes in Math., 350 (1973), 191-268. Zbl0277.12014MR53 #7949a
  15. [15] J. TATE, p-divisible groups, Proc. Conf. On local fields, ed. T. Springer, Springer-Verlag, (1967), 153-183. Zbl0157.27601

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.