A new construction of p -adic L -functions attached to certain elliptic curves with complex multiplication

John L. Boxall

Annales de l'institut Fourier (1986)

  • Volume: 36, Issue: 4, page 31-68
  • ISSN: 0373-0956

Abstract

top
In this paper we apply the results of our previous article on the p -adic interpolation of logarithmic derivatives of formal groups to the construction of p -adic L -functions attached to certain elliptic curves with complex multiplication. Our results are primarily concerned with curves with supersingular reduction.

How to cite

top

Boxall, John L.. "A new construction of ${p}$-adic $L$-functions attached to certain elliptic curves with complex multiplication." Annales de l'institut Fourier 36.4 (1986): 31-68. <http://eudml.org/doc/74738>.

@article{Boxall1986,
abstract = {In this paper we apply the results of our previous article on the $p$-adic interpolation of logarithmic derivatives of formal groups to the construction of $p$-adic $L$-functions attached to certain elliptic curves with complex multiplication. Our results are primarily concerned with curves with supersingular reduction.},
author = {Boxall, John L.},
journal = {Annales de l'institut Fourier},
keywords = {p-adic L-functions; elliptic curve; supersingular primes; complex multiplications; interpolation of Eisenstein series; Kronecker limit formula},
language = {eng},
number = {4},
pages = {31-68},
publisher = {Association des Annales de l'Institut Fourier},
title = {A new construction of $\{p\}$-adic $L$-functions attached to certain elliptic curves with complex multiplication},
url = {http://eudml.org/doc/74738},
volume = {36},
year = {1986},
}

TY - JOUR
AU - Boxall, John L.
TI - A new construction of ${p}$-adic $L$-functions attached to certain elliptic curves with complex multiplication
JO - Annales de l'institut Fourier
PY - 1986
PB - Association des Annales de l'Institut Fourier
VL - 36
IS - 4
SP - 31
EP - 68
AB - In this paper we apply the results of our previous article on the $p$-adic interpolation of logarithmic derivatives of formal groups to the construction of $p$-adic $L$-functions attached to certain elliptic curves with complex multiplication. Our results are primarily concerned with curves with supersingular reduction.
LA - eng
KW - p-adic L-functions; elliptic curve; supersingular primes; complex multiplications; interpolation of Eisenstein series; Kronecker limit formula
UR - http://eudml.org/doc/74738
ER -

References

top
  1. [1] J. L. BOXALL, p-adic Interpolation of Logarithmic Derivatives Associated to Certain Lubin-Tate Formal Groups, Ann. Inst. Fourier, Grenoble, 36, 3 (1986), to appear. Zbl0587.12007MR88f:11113
  2. [2] J. L. BOXALL, On p-adic L-functions Attached to Elliptic Curves with Complex Multiplication (to appear). Zbl0626.12014
  3. [3] A. BRUMER, On the Units of Algebraic Number Fields, Mathematika, 14 (1967), 121-124. Zbl0171.01105MR36 #3746
  4. [4] J. COATES and C. GOLDSTEIN, Some Remarks on the Main Conjecture for Elliptic Curves with Complex Multiplication, Amer J. Math., 105 (1983), 337-366. Zbl0524.14023MR85d:11100
  5. [5] J. COATES and A. WILES, On the Conjecture of Birch and Swinnerton-Dyer, Inventiones Math., 39 (1977), 223-251. Zbl0359.14009MR57 #3134
  6. [6] J. COATES and A. WILES, On p-adic L-functions and Elliptic Units, J. Austral. Math. Soc., ser. A, 26 (1978), 1-25. Zbl0442.12007MR80a:12007
  7. [7] R. DAMERELL, L-functions of Elliptic Curves with Complex Multiplication, Acta Arith., 17 (1970), 287-301. Zbl0209.24603MR44 #2758
  8. [8] R. GILLARD and G. ROBERT, Groupes d'Unités Elliptiques, Bull. Soc. Math. France, 107 (1979), 305-317. Zbl0434.12003MR81c:12009
  9. [9] C. GOLDSTEIN and N. SCHAPPACHER, Séries d'Eisenstein et Fonctions L de Courbes Elliptiques à Multiplication Complexe, Crelle's J., 327 (1981), 184-218. Zbl0456.12007MR82m:12007
  10. [10] K. IWASAWA, Lectures on p-adic L-functions, Annals of Math. Studies, 74 P.U.P. (1972). Zbl0236.12001MR50 #12974
  11. [11] E. E. KUMMER, Ùber eine allgemeine Eigenschaft der rationale Entwicklungs coefficienten einer bestimmten Gattung analysischer Functionen, Crelle's J., 41 (1851), 368-372, (= Collected Works vol. 1, pp. 358-362 Springer-Verlag (1975)). 
  12. [12] T. KUBOTA and H. W. LEOPOLDT, Eine p-adische Theorie der Zetawerte, Crelle's J., 214/215 (1964), 328-339. Zbl0186.09103MR29 #1199
  13. [13] N. KATZ, p-adic Interpolation of Real-Analytic Eisenstein Series, Annals of Math., 104 (1976), 459-571. Zbl0354.14007MR58 #22071
  14. [14] N. KATZ, The Eisenstein Measure and p-adic Interpolation, Amer. J. Math., 99 (1977), 238-311. Zbl0375.12022MR58 #5602
  15. [15] N. KATZ, Formal Groups and p-adic Interpolation, Astérisque, 41-42 (1977), 55-65. Zbl0351.14024MR56 #319
  16. [16] N. KATZ, Divisibilities, Congruences and Cartier Duality, J. Fac. Sci. Univ. Tokyo, Ser. 1A, 28 (1982), 667-678. Zbl0559.14032
  17. [17] S. LANG, Elliptic Functions, Addison Wesley (1973). Zbl0316.14001MR53 #13117
  18. [18] H. W. LEOPOLDT, Eine p-adische Theorie der Zetawerte II, Crelle's J., 274/275 (1975), 224-239. Zbl0309.12009MR52 #351
  19. [19] S. LICHTENBAUM, On p-adic L-functions Associated to Elliptic Curves, Inventiones Math., 56 (1980), 19-55. Zbl0425.12017MR81j:12013
  20. [20] J. LUBIN, One-Parameter Formal Lie Groups over p-adic Integer Rings, Annals of Math., 80 (1964), 464-484. Zbl0135.07003MR29 #5827
  21. [21] B. MAZUR and P. SWINNERTON-DYER, Arithmetic of Weil Curves, Inventiones Math., 25 (1974), 1-61. Zbl0281.14016MR50 #7152
  22. [22] B. MAZUR and A. WILES, Class fields of Abelian extensions of Q, Invent. Math., 76 (1984), 179-330. Zbl0545.12005MR85m:11069
  23. [23] G. ROBERT, Unités Elliptiques, Bull. Soc. Math. France, Mémoire 36 (1973). Zbl0314.12006
  24. [24] K. RUBIN, Congruences for Special Values of L-functions of Elliptic Curves with Complex Multiplication, Invent. Math., 71 (1983), 339-364. Zbl0513.14012MR84h:12018
  25. [25] J.-P. SERRE, Formes Modulaires et Fonction Zêta p-adiques, in Springer Lecture Notes in Math., 350 (1973), 191-268. Zbl0277.12014MR53 #7949a
  26. [26] J.-P. SERRE and J. TATE, Good Reduction of Abelian Varieties, Annals of Math., 88 (1968), 492-517. Zbl0172.46101MR38 #4488
  27. [27] E. DE SHALIT, Ph. D. Thesis, Princeton University (1984). 
  28. [28] J. TATE, p-divisible Groups, Proc. Conf. on Local Fields, Ed. T. Springer, Springer-Verlag (1967), 158-183. Zbl0157.27601MR38 #155
  29. [29] M. M. VISHIK and J. MANIN, p-adic Hecke Series of Imaginary Quadratic Fields, Math. USSR Sbornik, 24 (1974), 345-371. Zbl0329.12016
  30. [30] L. WASHINGTON, Introduction to Cyclotomic Fields, Graduate Texts in Math., Springer-Verlag (1982). Zbl0484.12001MR85g:11001
  31. [31] A. WEIL, Elliptic Functions According to Eisenstein and Kronecker, Springer-Verlag (1976). Zbl0318.33004MR58 #27769a
  32. [32] R. YAGER, On the Two-Variable p-adic L-function, Annals of Math., 115 (1982), 411-449. Zbl0496.12010MR84b:14020
  33. [33] R. YAGER, p-adic Measures on Galois Groups, Inventiones Math., 76 (1984), 331-343. Zbl0555.12006MR86b:11045

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.