A new construction of -adic -functions attached to certain elliptic curves with complex multiplication
Annales de l'institut Fourier (1986)
- Volume: 36, Issue: 4, page 31-68
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBoxall, John L.. "A new construction of ${p}$-adic $L$-functions attached to certain elliptic curves with complex multiplication." Annales de l'institut Fourier 36.4 (1986): 31-68. <http://eudml.org/doc/74738>.
@article{Boxall1986,
abstract = {In this paper we apply the results of our previous article on the $p$-adic interpolation of logarithmic derivatives of formal groups to the construction of $p$-adic $L$-functions attached to certain elliptic curves with complex multiplication. Our results are primarily concerned with curves with supersingular reduction.},
author = {Boxall, John L.},
journal = {Annales de l'institut Fourier},
keywords = {p-adic L-functions; elliptic curve; supersingular primes; complex multiplications; interpolation of Eisenstein series; Kronecker limit formula},
language = {eng},
number = {4},
pages = {31-68},
publisher = {Association des Annales de l'Institut Fourier},
title = {A new construction of $\{p\}$-adic $L$-functions attached to certain elliptic curves with complex multiplication},
url = {http://eudml.org/doc/74738},
volume = {36},
year = {1986},
}
TY - JOUR
AU - Boxall, John L.
TI - A new construction of ${p}$-adic $L$-functions attached to certain elliptic curves with complex multiplication
JO - Annales de l'institut Fourier
PY - 1986
PB - Association des Annales de l'Institut Fourier
VL - 36
IS - 4
SP - 31
EP - 68
AB - In this paper we apply the results of our previous article on the $p$-adic interpolation of logarithmic derivatives of formal groups to the construction of $p$-adic $L$-functions attached to certain elliptic curves with complex multiplication. Our results are primarily concerned with curves with supersingular reduction.
LA - eng
KW - p-adic L-functions; elliptic curve; supersingular primes; complex multiplications; interpolation of Eisenstein series; Kronecker limit formula
UR - http://eudml.org/doc/74738
ER -
References
top- [1] J. L. BOXALL, p-adic Interpolation of Logarithmic Derivatives Associated to Certain Lubin-Tate Formal Groups, Ann. Inst. Fourier, Grenoble, 36, 3 (1986), to appear. Zbl0587.12007MR88f:11113
- [2] J. L. BOXALL, On p-adic L-functions Attached to Elliptic Curves with Complex Multiplication (to appear). Zbl0626.12014
- [3] A. BRUMER, On the Units of Algebraic Number Fields, Mathematika, 14 (1967), 121-124. Zbl0171.01105MR36 #3746
- [4] J. COATES and C. GOLDSTEIN, Some Remarks on the Main Conjecture for Elliptic Curves with Complex Multiplication, Amer J. Math., 105 (1983), 337-366. Zbl0524.14023MR85d:11100
- [5] J. COATES and A. WILES, On the Conjecture of Birch and Swinnerton-Dyer, Inventiones Math., 39 (1977), 223-251. Zbl0359.14009MR57 #3134
- [6] J. COATES and A. WILES, On p-adic L-functions and Elliptic Units, J. Austral. Math. Soc., ser. A, 26 (1978), 1-25. Zbl0442.12007MR80a:12007
- [7] R. DAMERELL, L-functions of Elliptic Curves with Complex Multiplication, Acta Arith., 17 (1970), 287-301. Zbl0209.24603MR44 #2758
- [8] R. GILLARD and G. ROBERT, Groupes d'Unités Elliptiques, Bull. Soc. Math. France, 107 (1979), 305-317. Zbl0434.12003MR81c:12009
- [9] C. GOLDSTEIN and N. SCHAPPACHER, Séries d'Eisenstein et Fonctions L de Courbes Elliptiques à Multiplication Complexe, Crelle's J., 327 (1981), 184-218. Zbl0456.12007MR82m:12007
- [10] K. IWASAWA, Lectures on p-adic L-functions, Annals of Math. Studies, 74 P.U.P. (1972). Zbl0236.12001MR50 #12974
- [11] E. E. KUMMER, Ùber eine allgemeine Eigenschaft der rationale Entwicklungs coefficienten einer bestimmten Gattung analysischer Functionen, Crelle's J., 41 (1851), 368-372, (= Collected Works vol. 1, pp. 358-362 Springer-Verlag (1975)).
- [12] T. KUBOTA and H. W. LEOPOLDT, Eine p-adische Theorie der Zetawerte, Crelle's J., 214/215 (1964), 328-339. Zbl0186.09103MR29 #1199
- [13] N. KATZ, p-adic Interpolation of Real-Analytic Eisenstein Series, Annals of Math., 104 (1976), 459-571. Zbl0354.14007MR58 #22071
- [14] N. KATZ, The Eisenstein Measure and p-adic Interpolation, Amer. J. Math., 99 (1977), 238-311. Zbl0375.12022MR58 #5602
- [15] N. KATZ, Formal Groups and p-adic Interpolation, Astérisque, 41-42 (1977), 55-65. Zbl0351.14024MR56 #319
- [16] N. KATZ, Divisibilities, Congruences and Cartier Duality, J. Fac. Sci. Univ. Tokyo, Ser. 1A, 28 (1982), 667-678. Zbl0559.14032
- [17] S. LANG, Elliptic Functions, Addison Wesley (1973). Zbl0316.14001MR53 #13117
- [18] H. W. LEOPOLDT, Eine p-adische Theorie der Zetawerte II, Crelle's J., 274/275 (1975), 224-239. Zbl0309.12009MR52 #351
- [19] S. LICHTENBAUM, On p-adic L-functions Associated to Elliptic Curves, Inventiones Math., 56 (1980), 19-55. Zbl0425.12017MR81j:12013
- [20] J. LUBIN, One-Parameter Formal Lie Groups over p-adic Integer Rings, Annals of Math., 80 (1964), 464-484. Zbl0135.07003MR29 #5827
- [21] B. MAZUR and P. SWINNERTON-DYER, Arithmetic of Weil Curves, Inventiones Math., 25 (1974), 1-61. Zbl0281.14016MR50 #7152
- [22] B. MAZUR and A. WILES, Class fields of Abelian extensions of Q, Invent. Math., 76 (1984), 179-330. Zbl0545.12005MR85m:11069
- [23] G. ROBERT, Unités Elliptiques, Bull. Soc. Math. France, Mémoire 36 (1973). Zbl0314.12006
- [24] K. RUBIN, Congruences for Special Values of L-functions of Elliptic Curves with Complex Multiplication, Invent. Math., 71 (1983), 339-364. Zbl0513.14012MR84h:12018
- [25] J.-P. SERRE, Formes Modulaires et Fonction Zêta p-adiques, in Springer Lecture Notes in Math., 350 (1973), 191-268. Zbl0277.12014MR53 #7949a
- [26] J.-P. SERRE and J. TATE, Good Reduction of Abelian Varieties, Annals of Math., 88 (1968), 492-517. Zbl0172.46101MR38 #4488
- [27] E. DE SHALIT, Ph. D. Thesis, Princeton University (1984).
- [28] J. TATE, p-divisible Groups, Proc. Conf. on Local Fields, Ed. T. Springer, Springer-Verlag (1967), 158-183. Zbl0157.27601MR38 #155
- [29] M. M. VISHIK and J. MANIN, p-adic Hecke Series of Imaginary Quadratic Fields, Math. USSR Sbornik, 24 (1974), 345-371. Zbl0329.12016
- [30] L. WASHINGTON, Introduction to Cyclotomic Fields, Graduate Texts in Math., Springer-Verlag (1982). Zbl0484.12001MR85g:11001
- [31] A. WEIL, Elliptic Functions According to Eisenstein and Kronecker, Springer-Verlag (1976). Zbl0318.33004MR58 #27769a
- [32] R. YAGER, On the Two-Variable p-adic L-function, Annals of Math., 115 (1982), 411-449. Zbl0496.12010MR84b:14020
- [33] R. YAGER, p-adic Measures on Galois Groups, Inventiones Math., 76 (1984), 331-343. Zbl0555.12006MR86b:11045
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.