Une nouvelle propriété des suites de Rudin-Shapiro

Martine Queffelec

Annales de l'institut Fourier (1987)

  • Volume: 37, Issue: 2, page 115-138
  • ISSN: 0373-0956

Abstract

top
The Rudin-Shapiro sequences have extremal properties in harmonic analysis. Using the fact that such a sequence is an automaton-sequence, we describe explicitely its spectrum (maximal spectral type, spectral multiplicity, multiplicity function). For example, we prove that the q -generalized Rudin-Shapiro sequence contains in its spectrum a Lebesgue-component, with multiplicity equal to q φ ( q ) .

How to cite

top

Queffelec, Martine. "Une nouvelle propriété des suites de Rudin-Shapiro." Annales de l'institut Fourier 37.2 (1987): 115-138. <http://eudml.org/doc/74748>.

@article{Queffelec1987,
abstract = {Les suites de Rudin-Shapiro ont des propriétés extrémales en analyse harmonique. En remarquant qu’une telle suite est reconnaissable par un automate fini, nous en décrivons explicitement le spectre (type spectral maximal, multiplicité spectrale fonction multiplicité). Nous établissons par exemple, que la suite de Rudin-Shapiro généralisée à l’ordre $q$ contient dans son spectre une composante de Lebesgue, de multiplicité $q\varphi (q)$.},
author = {Queffelec, Martine},
journal = {Annales de l'institut Fourier},
keywords = {Rudin-Shapiro sequences; extremal properties; automaton sequence; spectrum; maximal spectral type; spectral multiplicity; multiplicity function; q-generalized Rudin-Shapiro sequence; substitution; dynamical system; Riesz products},
language = {fre},
number = {2},
pages = {115-138},
publisher = {Association des Annales de l'Institut Fourier},
title = {Une nouvelle propriété des suites de Rudin-Shapiro},
url = {http://eudml.org/doc/74748},
volume = {37},
year = {1987},
}

TY - JOUR
AU - Queffelec, Martine
TI - Une nouvelle propriété des suites de Rudin-Shapiro
JO - Annales de l'institut Fourier
PY - 1987
PB - Association des Annales de l'Institut Fourier
VL - 37
IS - 2
SP - 115
EP - 138
AB - Les suites de Rudin-Shapiro ont des propriétés extrémales en analyse harmonique. En remarquant qu’une telle suite est reconnaissable par un automate fini, nous en décrivons explicitement le spectre (type spectral maximal, multiplicité spectrale fonction multiplicité). Nous établissons par exemple, que la suite de Rudin-Shapiro généralisée à l’ordre $q$ contient dans son spectre une composante de Lebesgue, de multiplicité $q\varphi (q)$.
LA - fre
KW - Rudin-Shapiro sequences; extremal properties; automaton sequence; spectrum; maximal spectral type; spectral multiplicity; multiplicity function; q-generalized Rudin-Shapiro sequence; substitution; dynamical system; Riesz products
UR - http://eudml.org/doc/74748
ER -

References

top
  1. [1] J. P. ALLOUCHE et M. MENDÈS FRANCE, Suite de Rudin-Shapiro et modèle d'Ising, B.S.M.F., vol. 113 (1985), 273. Zbl0592.10049MR87h:11020
  2. [2] J. BRILLHART et L. CARLITZ, Note on the Shapiro polynomials, Proc. of the A.M.S., vol. 25 (1970), 114. Zbl0191.35101MR41 #5575
  3. [3] J. BRILLHART et P. MORTON, On the Rudin-Shapiro polynomials, Ill. J. Math., vol. 22 (1978), 126. Zbl0371.10009
  4. [4] G. CHRISTOL, T. KAMAE, M. MENDÈS FRANCE et G. RAUZY, Suites algébriques, automates et substitutions, B.S.M.F., 108 (1980), 401. Zbl0472.10035MR82e:10092
  5. [5] I. P. CORNFELD, S. V. FOMIN et Y. G. SINAI, Ergodic theory, Springer, 1982. Zbl0493.28007
  6. [6] E. M. COVEN et M. KEANE, The structure of substitution minimal sets, T.A.M.S., vol. 162 (1971), 89. Zbl0205.28303MR44 #2219
  7. [7] F. M. DEKKING, The spectrum of dynamical systems arising from substitutions of constant length, Z. Wahr. Verw. Geb., vol. 41 (1978), 221. Zbl0348.54034MR57 #1455
  8. [8] J. M. DUMONT, Discrépance des progressions arithmétiques dans la suite de Morse, C.R.A.S., t. 297 (1983). Zbl0533.10005MR85f:11058
  9. [9] P. R. HALMOS, Introduction to Hilbert spaces and the theory of spectral multiplicity, Chelsea P. C. New-York, 1957. Zbl0079.12404
  10. [10] T. KAMAE, Spectral properties of automaton-generating sequences, non publié. Zbl0371.10044
  11. [11] J. MATHEW et M. G. NADKARNI, A measure preserving transformation whose spectrum has Lebesgue component of multiplicity two, preprint. Zbl0515.28010
  12. [12] J. MATHEW et M. G. NADKARNI, Measure preserving transformations whose spectra have Lebesgue component of finite multiplicity, Preprint. Zbl0515.28010
  13. [13] J.F. MELA, B. HOST et F. PARREAU, Analyse harmonique des mesures, Astérisque, n° 135-136 (1986). Zbl0589.43001MR88a:43005
  14. [14] M. MENDÈS FRANCE et G. TENENBAUM, Dimension des courbes planes, papiers pliés et suites de Rudin-Shapiro, B.S.M.F., vol. 109 (1981), 207. Zbl0468.10033MR82k:10073
  15. [15] M. QUEFFELEC, Contribution à l'étude spectrale des suites arithmétiques, Thèse, Villetaneuse, 1984. 
  16. [16] D. RIDER, Transformations of Fourier coefficients, Pacific J. Math., vol. 19 (1966), 347. Zbl0144.32001MR34 #3195
  17. [17] W. RUDIN, Some theorems on Fourier coefficients, P.A.M.S., vol. 10 (1959), 855. Zbl0091.05706MR22 #6979
  18. [18] H. S. SHAPIRO, Extremal problems for polynomials and power series. M.I.T. Master's thesis, Cambridge, Mass (1951). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.