An F. and M. Riesz theorem for bounded symmetric domains
Annales de l'institut Fourier (1987)
- Volume: 37, Issue: 2, page 139-150
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBrummelhuis, R. G. M.. "An F. and M. Riesz theorem for bounded symmetric domains." Annales de l'institut Fourier 37.2 (1987): 139-150. <http://eudml.org/doc/74749>.
@article{Brummelhuis1987,
abstract = {We generalize the classical F. and M. Riesz theorem to metrizable compact groups whose center contains a copy of the circle group. Important examples of such groups are the isotropy groups of the bounded symmetric domains.The proof uses a criterion for absolute continuity involving $L^p$ spaces with $p< 1$: A measure $\mu $ on a compact metrisable group $K$ is absolutely continuous with respect to Haar measure $dk$ on $K$ if for some $p< 1$ a certain subspace of $L^p(K,dk)$ which is related to $\mu $ has sufficiently many continuous linear functionals to separate its points. For abelian $K$ this criterion is due to J.H. Shapiro.},
author = {Brummelhuis, R. G. M.},
journal = {Annales de l'institut Fourier},
keywords = {Riesz theorem; metrizable compact groups; bounded symmetric domains; absolute continuity; spaces},
language = {eng},
number = {2},
pages = {139-150},
publisher = {Association des Annales de l'Institut Fourier},
title = {An F. and M. Riesz theorem for bounded symmetric domains},
url = {http://eudml.org/doc/74749},
volume = {37},
year = {1987},
}
TY - JOUR
AU - Brummelhuis, R. G. M.
TI - An F. and M. Riesz theorem for bounded symmetric domains
JO - Annales de l'institut Fourier
PY - 1987
PB - Association des Annales de l'Institut Fourier
VL - 37
IS - 2
SP - 139
EP - 150
AB - We generalize the classical F. and M. Riesz theorem to metrizable compact groups whose center contains a copy of the circle group. Important examples of such groups are the isotropy groups of the bounded symmetric domains.The proof uses a criterion for absolute continuity involving $L^p$ spaces with $p< 1$: A measure $\mu $ on a compact metrisable group $K$ is absolutely continuous with respect to Haar measure $dk$ on $K$ if for some $p< 1$ a certain subspace of $L^p(K,dk)$ which is related to $\mu $ has sufficiently many continuous linear functionals to separate its points. For abelian $K$ this criterion is due to J.H. Shapiro.
LA - eng
KW - Riesz theorem; metrizable compact groups; bounded symmetric domains; absolute continuity; spaces
UR - http://eudml.org/doc/74749
ER -
References
top- [1] A. B. ALEKSANDROV, Existence of inner functions in the unit ball, Mat. Sb., 118 (160), N2 (6) (1982), 147-163. Zbl0503.32001MR83i:32002
- [2] A. B. ALEKSANDROV, Essays on non locally convex Hardy classes, Complex Analysis and Spectral theory, Seminar, Leningrad 1979/1980, V. P. Havin and N. K. Nikol'skii (ed.), 1-89. Zbl0482.46035MR84h:46066
- [3] P. L. DUREN, Theory of Hp Spaces, Acad. Press, New York, 1970. Zbl0215.20203MR42 #3552
- [4] S. HELGASON, Differential Geometry, Lie Groups and Symmetric Spaces, Acad. Press, New York, 1978. Zbl0451.53038
- [5] Y. KANJIN, A convolution measure algebra on the unit disc, Tohoku Math. J., 28 (1976), 105-115. Zbl0321.43011MR53 #1178
- [6] A. KORANYI, Holomorphic and harmonic functions on bounded symmetric domains, C.I.M.E. summer course on Geometry of Bounded Homogeneous Domains, Cremonese, Roma, 1968, 125-197. Zbl0167.06702MR38 #6098
- [7] W. RUDIN, Function Theory in the Unit Ball of Cn, Springer Verlag, Berlin, 1980. Zbl0495.32001MR82i:32002
- [8] W. RUDIN, Inner functions in the unit ball of Cn, J. Funct. Anal, 50 (1983), 100-126. Zbl0554.32002MR84i:32007
- [9] W. RUDIN, Fourier Analysis on Groups, Interscience, John Wiley, 1960.
- [10] W. RUDIN, Trigonometric series with gaps, J. Math. Mech., 9 (1960), 203-228. Zbl0091.05802MR22 #6972
- [11] J. H. SHAPIRO, Subspaces of Lp(G) spanned by characters, 0 < p < 1, Israel J. Math., 29, Nos 2-3 (1978), 248-264. Zbl0382.46015MR57 #17123
- [12] W. SCHMID, Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Raumen, Invent. Math., 9 (1969), 61-80. Zbl0219.32013MR41 #3806
- [13] E. M. STEIN, Note on the boundary values of holomorphic functions, Ann. of Math., 82 (1965), 351-353. Zbl0173.09004MR32 #5923
- [14] S. VÁGI, Harmonic analysis on Cartan and Siegel domains, M.A.A. Studies in Math., vol. 13 : Studies in Harmonic Analysis, J. Ash (ed.), 257-309. Zbl0352.32031MR57 #16719
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.