Henkin measures, Riesz products and singular sets

Evgueni Doubtsov

Annales de l'institut Fourier (1998)

  • Volume: 48, Issue: 3, page 699-728
  • ISSN: 0373-0956

Abstract

top
The mutual singularity problem for measures with restrictions on the spectrum is studied. The d -pluriharmonic Riesz product construction on the complex sphere is introduced. Singular pluriharmonic measures supported by sets of maximal Hausdorff dimension are obtained.

How to cite

top

Doubtsov, Evgueni. "Henkin measures, Riesz products and singular sets." Annales de l'institut Fourier 48.3 (1998): 699-728. <http://eudml.org/doc/75299>.

@article{Doubtsov1998,
abstract = {The mutual singularity problem for measures with restrictions on the spectrum is studied. The $d$-pluriharmonic Riesz product construction on the complex sphere is introduced. Singular pluriharmonic measures supported by sets of maximal Hausdorff dimension are obtained.},
author = {Doubtsov, Evgueni},
journal = {Annales de l'institut Fourier},
keywords = {Henkin measures; pluriharmonic Riesz products; complex spherical harmonics; singular sets},
language = {eng},
number = {3},
pages = {699-728},
publisher = {Association des Annales de l'Institut Fourier},
title = {Henkin measures, Riesz products and singular sets},
url = {http://eudml.org/doc/75299},
volume = {48},
year = {1998},
}

TY - JOUR
AU - Doubtsov, Evgueni
TI - Henkin measures, Riesz products and singular sets
JO - Annales de l'institut Fourier
PY - 1998
PB - Association des Annales de l'Institut Fourier
VL - 48
IS - 3
SP - 699
EP - 728
AB - The mutual singularity problem for measures with restrictions on the spectrum is studied. The $d$-pluriharmonic Riesz product construction on the complex sphere is introduced. Singular pluriharmonic measures supported by sets of maximal Hausdorff dimension are obtained.
LA - eng
KW - Henkin measures; pluriharmonic Riesz products; complex spherical harmonics; singular sets
UR - http://eudml.org/doc/75299
ER -

References

top
  1. [A1] A.B. ALEKSANDROV, Inner functions on compact spaces, Funct. Anal. Appl., 18 (1984), 87-98. Zbl0574.32006MR86d:32003
  2. [A2] A.B. ALEKSANDROV, Function theory in the ball, in: G. M. Khenkin and A. G. Vitushkin (Eds.), Encyclopaedia Math. Sci., 8 (Several Complex Variables II), Springer, Berlin, 1994, 107-178. Zbl0787.32011
  3. [AAN] A.B. ALEKSANDROV, J.M. ANDERSON, and A. NICOLAU, Inner functions, Bloch spaces and symmetric measures, preprint, 1997. 
  4. [AB] H. ALEXANDER and J. BRUNA, Pluriharmonic interpolation and hulls of C1 curves in the unit sphere, Rev. Mat. Iberoamericana, 11 (1995), 547-568. Zbl0842.31008MR96h:32013
  5. [Bi] P. BILLINGSLEY, Ergodic theory and information, Wiley, New York, 1965. Zbl0141.16702MR33 #254
  6. [B1] J. BOURGAIN, The Dunford-Pettis property for the ball-algebras, the polydisc-algebras and the Sobolev spaces, Studia Math., 77 (1984), 245-253. Zbl0576.46040MR85f:46044
  7. [B2] J. BOURGAIN, Applications of the spaces of homogeneous polynomials to some problems on the ball algebra, Proc. Amer. Math. Soc., 93 (1985), 277-283. Zbl0584.46038MR86i:46025
  8. [Br] R.J.M. BRUMMELHUIS, An F. and M. Riesz theorem for bounded symmetric domains, Ann. Inst. Fourier, Grenoble, 37-2 (1987), 139-150. Zbl0607.43002MR89c:43002
  9. [CT] J. CIMA and R. TIMONEY, The Dunford-Pettis property for certain planar uniform algebras, Mich. Math. J., 34 (1987), 99-104. Zbl0617.46058MR88e:46023
  10. [D1] E.S. DUBTSOV (=DOUBTSOV), Singular parts of pluriharmonic measures, Zap. Nauchn. Sem. S.Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 217 (1994), 54-58 (Russian) ; English transl., J. Math. Sci. (New York), 85-2 (1997), 1790-1793. Zbl0907.31007
  11. [D2] E.S. DUBTSOV, Some questions of the harmonic analysis on a complex sphere, Vestnik St. Petersburg Univ. Math., 28-1 (1995), 12-16. Zbl0885.32005MR1794585
  12. [D3] E. DOUBTSOV, Regular unitarily invariant spaces on the complex sphere, submitted. 
  13. [He] B.S. HENRIKSEN, A peak set of Hausdorff dimension 2n-1 for the algebra A(D) in the boundary of a domain D with C∞-boundary in Cn, Math. Ann., 259 (1982), 271-277. Zbl0483.32011MR83k:32028
  14. [HV] S.V. HRUŠČËV and S.A. VINOGRADOV, Free interpolation in the space of uniformly convergent Taylor series, Lect. Notes Math., 864 (1981), 171-213. Zbl0463.30001MR83b:30032
  15. [I] K. IZUCHI, Bourgain algebras of the disc, polydisc and ball algebras, Duke Math. J., 66 (1992), 503-519. Zbl0806.46061MR93f:46082
  16. [M] D.E. MENCHOFF, Sur l'unicité du développement trigonométrique, C. R. Acad. Sci. Paris, Sér. A-B, 163 (1916), 433-436. JFM46.0457.02
  17. [N] A. NAGEL, Cauchy transforms of measures and a characterization of smooth peak interpolation sets for the ball algebra, Rocky Mountain J. Math., 9 (1979), 299-305. Zbl0424.32003MR80b:32007
  18. [P] A. PEYRIÈRE, Étude de quelques propriétés des produits de Riesz, Ann. Inst. Fourier, Grenoble, 25-2 (1975), 127-169. Zbl0302.43003MR53 #8771
  19. [RS] J.-P. ROSAY and E.L. STOUT, On pluriharmonic interpolation, Math. Scand., 63 (1988), 268-281. Zbl0648.32009MR90k:32055
  20. [Ru] W. RUDIN, Function Theory in the Unit Ball of Cn, Grundlehren Math. Wiss., 241, Springer, Berlin, 1980. Zbl0495.32001MR82i:32002
  21. [RW] J. RYLL and P. WOJTASZCZYK, On homogeneous polynomials on a complex ball, Trans. Amer. Math. Soc., 276 (1983), 107-116. Zbl0522.32004MR84f:32004
  22. [Z] A. ZYGMUND, Trigonometric Series, vol. 1, Cambridge Univ. Press, 1959. Zbl0085.05601

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.