Formes différentielles invariantes à gauche sur le groupe quantique G L p , q ( 2 )

G. Maltsiniotis

Recherche Coopérative sur Programme n°25 (1992)

  • Volume: 43, page 163-180

How to cite

top

Maltsiniotis, G.. "Formes différentielles invariantes à gauche sur le groupe quantique $GL_{p,q}(2)$." Recherche Coopérative sur Programme n°25 43 (1992): 163-180. <http://eudml.org/doc/274962>.

@article{Maltsiniotis1992,
author = {Maltsiniotis, G.},
journal = {Recherche Coopérative sur Programme n°25},
language = {fre},
pages = {163-180},
publisher = {Institut de Recherche Mathématique Avancée - Université Louis Pasteur},
title = {Formes différentielles invariantes à gauche sur le groupe quantique $GL_\{p,q\}(2)$},
url = {http://eudml.org/doc/274962},
volume = {43},
year = {1992},
}

TY - JOUR
AU - Maltsiniotis, G.
TI - Formes différentielles invariantes à gauche sur le groupe quantique $GL_{p,q}(2)$
JO - Recherche Coopérative sur Programme n°25
PY - 1992
PB - Institut de Recherche Mathématique Avancée - Université Louis Pasteur
VL - 43
SP - 163
EP - 180
LA - fre
UR - http://eudml.org/doc/274962
ER -

References

top
  1. [Ab] E. Abe, "Hopf algebras," Cambridge Tracts in Math.74, Cambridge Univ. Press, 1980. Zbl0476.16008MR594432
  2. [Ao1] K. Aomoto, q-analogue of the de Rham cohomology associated with Jackson integrals. I, Proc. Japan Acad.66 (A) (1990), 161-164. Zbl0718.33011MR1078398
  3. [Ao2] K. Aomoto, q-analogue of the de Rham cohomology associated with Jackson integrals. II, Proc. Japan Acad.66 (A) (1990), 240-244. Zbl0718.33012MR1077605
  4. [Ao3] K. Aomoto, Finiteness of a cohomology associated with certain Jackson integrals, Tôhoku Math. J.43 (1991), 75-101. Zbl0769.33016MR1088716
  5. [AST] M. Artin, W. Schelter, J. Tate, Quantum deformations of GLn, Comm. Pure Appl. Math.44 (1991), 879-895. Zbl0753.17015MR1127037
  6. [Be] G. M. Bergman, The diamond lemma for ring theory, Adv. Math.29 (1978), 178-218. Zbl0326.16019MR506890
  7. [Bd] D. Bernard, Quantum Lie algebras and differential calculus on quantum groups, Preprint (1990). Zbl0784.17015MR1182161
  8. [Bo] N. Bourbaki, "Eléments de Mathématique," Algèbre, Chapitres 1 à 3, Hermann, Paris, 1970. Zbl0211.02401
  9. [Br] T. Brzezinski, Exterior bialgebras, Preprint (1991). 
  10. [BDR] T. Brzezinski, H. Dabrowsky, J. Rembieliński, On the quantum differential calculus and the quantum holomorphicity, J. Math. Phys.33, 1 (1992), 19-24. Zbl0753.17017MR1141497
  11. [CSWW] U. Carow-Watamura, M. Schlieker, S. Watamura, W. Weich, Bicovariant differential calculus on quantum groups SUq(N) and SOq(N), Commun. Math. Phys.142 (1991), 605-641. Zbl0743.17015MR1138053
  12. [Ca] P. Cartier, Calcul différentiel non commutatif, Exposés à l'E.N.S. (1989). 
  13. [Co] A. Connes, Non-commutative differential geometry, Publications Mathématiques de l'I.H.E.S.62 (1985), 41-144. Zbl0592.46056
  14. [DM] P. Deligne, J. S. Milne, Tannakian categories, in "Hodge cycles, motives, and Shimura varieties," Lecture Notes in Mathematics900, Springer-Verlag, 1982, pp. 101-228. Zbl0477.14004MR654325
  15. [Dr] V. G. Drinfel'd, Quantum groups, in "Proceedings of the International Congress of Mathematicians 1986, Berkeley," AMS, 1987, pp. 798-820. Zbl0667.16003MR934283
  16. [DV1] M. Dubois-Violette, Dérivations et calcul différentiel non commutatif, C.R.A.S.307 (1988), 403-408. Zbl0661.17012MR965807
  17. [DV2] M. Dubois-Violette, Noncommutative differential geometry, quantum mechanics and gauge theory, Preprint, L.P.T.H.E.-Orsay90/31 (1990). Zbl0744.53042MR1134141
  18. [DKM1] M. Dubois-Violette, R. Kerner, J. Madore, Noncommutative differential geometry of matrix algebras, J. Math. Phys.31, 2 (1990), 316-322. Zbl0704.53081MR1034167
  19. [DKM2] M. Dubois-Violette, R. Kerner, J. Madore, Noncommutative differential geometry and new models of gauge theory, J. Math. Phys.31, 2 (1990), 323-330. Zbl0704.53082MR1034168
  20. [FT] P. Feng, B. Tsygan, Hochschild and cyclic homology of quantum groups, Commun. Math. Phys.140 (1991), 481-521. Zbl0743.17020MR1130695
  21. [EGA IV4] A. Grothendieck, "Éléments de géométrie algébrique IV," Publications Mathématiques de l'I.H.E.S.32, 1967. Zbl0153.22301
  22. [Gr] A. Grothendieck, On the De Rham cohomology of algebraic varieties, Publications Mathématiques de l'I.H.E.S.29 (1966), 95-103. Zbl0145.17602MR199194
  23. [GRR] D. Gurevich, A. Radul, V. Rubtsov, Non-commutative differential geometry and Yang-Baxter equation, Preprint (1990). 
  24. [HW] T. Hibi, M. Wakayama, A q-analogue of Capelli's identity for GL(2), Preprint, Hokkaido University (1991). Zbl0937.17009MR1351325
  25. [J1] M. Jimbo, A q-difference analogue of U(g) and the Yang-Baxter equation, Lett. Math. Phys.10 (1985), 63-69. Zbl0587.17004MR797001
  26. [J2] M. Jimbo, Quantum R matrix for the generalized Toda system, Commun. Math. Phys.102 (1986), 537-547. Zbl0604.58013MR824090
  27. [J3] M. Jimbo, A q-analogue of U(gl(N + 1)), Hecke algebras and the Yang-Baxter equation, Lett. Math. Phys.11 (1986), 247-252. Zbl0602.17005MR841713
  28. [Ju] B. Jurčo, Differential calculus on quantized simple Lie groups, Lett. Math. Phys.22 (1991), 177-186. Zbl0753.17020MR1129172
  29. [Ka] M. Karoubi, "Homologie cyclique et K-théorie," Asterisque149, 1987. Zbl0648.18008MR913964
  30. [Kas] C. Kassel, Cyclic homology of differential operators, the Virasoro algebra and a q-analogue, Preprint (1991). Zbl0761.17020MR1165187
  31. [Mal1] G. Maltsiniotis, Groupes quantiques et structures différentielles, C.R.A.S.311, Sér. I (1990), 831-834. Zbl0728.17010MR1082642
  32. [Mal2] G. Maltsiniotis, Calcul différentiel sur le groupe linéaire quantique, Preprint (1990). 
  33. [Mal3] G. Maltsiniotis, Groupoïdes quantiques, C.R.A.S.314, Sér. I (1992), 249-252. Zbl0767.17015MR1151708
  34. [Mal4] G. Maltsiniotis, Le langage des espaces et des groupes quantiques, Preprint (1992). Zbl0783.17007MR1204772
  35. [Man1] Yu. I. Manin, Some remarks on Koszul algebras and quantum groups, Ann. Inst. Fourier37, 4 (1987), 191-205. Zbl0625.58040MR927397
  36. [Man2] Yu. I. Manin, "Quantum groups and non-commutative geometry," Centre de Recherches Mathématiques de l'Université de Montréal, 1988. Zbl0724.17006MR1016381
  37. [Man3] Yu. I. Manin, Multiparametric quantum deformation of the general linear supergroup, Commun. Math. Phys.123 (1989), 163-175. Zbl0673.16004MR1002037
  38. [Man4] Yu. I. Manin, Notes on quantum groups and quantum de Rham complexes, Preprint, MPI/91-60 (1991). Zbl0810.17003MR1119249
  39. [MNW1] T. Masuda, Y. Nakagami, J. Watanabe, Noncommutative differential geometry on the quantum SU(2), I: An algebraic viewpoint, K-Theory4 (1990), 157-180. Zbl0719.46042MR1081658
  40. [MNW2] T. Masuda, Y. Nakagami, J. Watanabe, Noncommutative differential geometry on the quantum two sphere of Podles, I: An algebraic viewpoint, K-Theory5 (1991), 151-175. Zbl0763.46059MR1140900
  41. [M-H] F. Müller-Hoissen, Differential calculi on the quantum group G L p , q ( 2 ) , Preprint, GOET-TP55/91 (1991). Zbl0764.17017
  42. [NUW] M. Noumi, T. Umeda, M. Wakayama, A quantum analogue of the Capelli identity and an elementary differential calculus on G L q ( n ) , Preprint, University of Tokyo (1991). Zbl0835.17013MR1302325
  43. [Po] P. Podles, Differential calculus on quantum spheres, Lett. Math. Phys.18 (1989), 107-119. Zbl0702.53073MR1010990
  44. [Pr] S. B. Priddy, Koszul resolutions, Trans. Amer. Math. Soc.152 (1970), 39-60. Zbl0261.18016MR265437
  45. [RTF] N. Yu. Reshetikhin, L. A. Takhtadzhyan, L. D. Fadeev, Quantization of Lie groups and Lie algebras, Len. Math. J.1, 1 (1990), 193-225. Zbl0715.17015MR1015339
  46. [Ro] M. Rosso, Algèbres enveloppantes quantifiées, groupes quantiques compacts de matrices et calcul différentiel non commutatif, Duke Math. J.61, 1 (1990), 11-40. Zbl0721.17013MR1068378
  47. [Sch] A. Schirrmacher, Remarks on the use of R-matrices, Preprint (1991). Zbl0838.17016MR1205601
  48. [SWZ] A. Schirrmacher, J. Wess, B. Zumino, The two-parameter deformation of GL(2), its differential calculus, and Lie algebra, Z. Phys. C - Particles and Fields49 (1991), 317-324. MR1094112
  49. [SVZ] W. B. Schmidke, S. P. Vokos, B. Zumino, Differential geometry of the quantum supergroup G L q ( 1 | 1 ) , Z. Phys. C - Particles and Fields48 (1990), 249-255. Zbl0973.17504MR1076363
  50. [Su] A. Sudbery, Consistent multiparameter quantisation of GL(n), J. Phys. A: Math. Gen.23 (1990), L697-L704. Zbl0722.17007MR1068228
  51. [Ta] L. A. Takhtadzhyan, Noncommutative homology of quantum tori, Funct. Anal, and Appl.23, 2 (1989), 147-149. Zbl0708.19003MR1011367
  52. [Tsy] B. Tsygan, Notes on differential forms on quantum groups, Preprint (1991). Zbl1013.58501MR1215528
  53. [WZ] J. Wess, B. Zumino, Covariant differential calculus on the quantum hyperplane, Preprint (1990). Zbl0957.46514MR1128150
  54. [Wo1] S. L. Woronowicz, Twisted SU(2) group. An example of a non-commutative differential calculus, Publ. RIMS23 (1987), 117-181. Zbl0676.46050MR890482
  55. [Wo2] S. L. Woronowicz, Differential calculus on compact matrix pseudogroups (quantum groups), Commun. Math. Phys.122 (1989), 125-170. Zbl0751.58042MR994499
  56. [Za1] S. Zakrzewski, A differential structure for quantum mechanics, J. of Geom. and Phys.2, 3 (1985), 135-145. Zbl0607.46041MR851125
  57. [Za2] S. Zakrzewski, Quantum and classical pseudogroups. Part II. Differential and symplectic pseudogroups, Commun. Math. Phys.134 (1990), 371-395. Zbl0708.58031MR1081011

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.