Banach spaces which are -ideals in their bidual have property
Annales de l'institut Fourier (1989)
- Volume: 39, Issue: 2, page 361-371
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGodefroy, Gilles, and Li, D.. "Banach spaces which are $M$-ideals in their bidual have property $(u)$." Annales de l'institut Fourier 39.2 (1989): 361-371. <http://eudml.org/doc/74834>.
@article{Godefroy1989,
abstract = {We show that every Banach space which is an $M$-ideal in its bidual has the property $(u)$ of Pelczynski. Several consequences are mentioned.},
author = {Godefroy, Gilles, Li, D.},
journal = {Annales de l'institut Fourier},
keywords = {M-ideal in its bidual; property (u) of Pelczynski},
language = {eng},
number = {2},
pages = {361-371},
publisher = {Association des Annales de l'Institut Fourier},
title = {Banach spaces which are $M$-ideals in their bidual have property $(u)$},
url = {http://eudml.org/doc/74834},
volume = {39},
year = {1989},
}
TY - JOUR
AU - Godefroy, Gilles
AU - Li, D.
TI - Banach spaces which are $M$-ideals in their bidual have property $(u)$
JO - Annales de l'institut Fourier
PY - 1989
PB - Association des Annales de l'Institut Fourier
VL - 39
IS - 2
SP - 361
EP - 371
AB - We show that every Banach space which is an $M$-ideal in its bidual has the property $(u)$ of Pelczynski. Several consequences are mentioned.
LA - eng
KW - M-ideal in its bidual; property (u) of Pelczynski
UR - http://eudml.org/doc/74834
ER -
References
top- [1] E. M. ALFSEN, E. G. EFFROS, Structure in real Banach spaces I, Ann. of Math., 96 (1972), 98-128. Zbl0248.46019MR50 #5432
- [2] E. BEHRENDS, M-structure and the Banach-Stone theorem, Lecture Notes in Mathematics 736, Springer-Verlag (1977). Zbl0436.46013MR81b:46002
- [3] E. BEHRENDS, P. HARMAND, Banach spaces which are proper M-ideals, Studia Mathematica, 81 (1985), 159-169. Zbl0529.46015MR87f:46031
- [4] G. A. EDGAR, An ordering of Banach spaces, Pacific J. of Maths, 108, 1 (1983), 83-98. Zbl0533.46007MR84k:46012
- [5] G. GODEFROY, On Riesz subsets of abelian discrete groups, Israel J. of Maths, 61, 3 (1988), 301-331. Zbl0661.43003MR89m:43011
- [6] G. GODEFROY, P. SAAB, Weakly unconditionally convergent series in M-ideals, Math. Scand., to appear. Zbl0676.46006
- [7] G. GODEFROY, M. TALAGRAND, Nouvelles classes d'espaces de Banach à predual unique, Séminaire d'Ana. Fonct. de l'École Polytechnique, Exposé n° 6 (1980/1981). Zbl0475.46013
- [8] G. GODEFROY, Existence and uniqueness of isometric preduals : a survey, in Banach space Theory, Proceedings of a Research workshop held July 5-25, 1987, Contemporary Mathematics vol. 85 (1989), 131-194. Zbl0674.46010
- [9] G. GODEFROY, D. LI, Some natural families of M-ideals, to appear. Zbl0687.46010
- [10] P. HARMAND, A. LIMA, On spaces which are M-ideals in their biduals, Trans. Amer. Math. Soc., 283-1 (1984), 253-264. Zbl0545.46009MR86b:46016
- [11] A. LIMA, M-ideals of compact operators in classical Banach spaces, Math. Scand., 44 (1979), 207-217. Zbl0407.46019MR81c:47047
- [12] J. LINDENSTRAUSS, L. TZAFRIRI, Classical Banach spaces, Vol. II, Springer-Verlag (1979). Zbl0403.46022MR81c:46001
- [13] F. LUST, Produits tensoriels projectifs d'espaces de Banach faiblement sequentiellement complets, Coll. Math., 36-2 (1976), 255-267. Zbl0356.46058MR55 #11072
- [14] A. PELCZYNSKI, Banach spaces on which every unconditionally convergent operator is weakly compact, Bull. Acad. Pol. Sciences, 10 (1962), 641-648. Zbl0107.32504MR26 #6785
- [15] R. R. SMITH, J. D. WARD, Applications of convexity and M-ideal theory to quotient Banach algebras, Quart. J. of Maths. Oxford, 2-30 (1978), 365-384. Zbl0412.46042
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.