Unconditional ideals in Banach spaces

G. Godefroy; N. Kalton; P. Saphar

Studia Mathematica (1993)

  • Volume: 104, Issue: 1, page 13-59
  • ISSN: 0039-3223

Abstract

top
We show that a Banach space with separable dual can be renormed to satisfy hereditarily an “almost” optimal uniform smoothness condition. The optimal condition occurs when the canonical decomposition X * * * = X X * is unconditional. Motivated by this result, we define a subspace X of a Banach space Y to be an h-ideal (resp. a u-ideal) if there is an hermitian projection P (resp. a projection P with ∥I-2P∥ = 1) on Y* with kernel X . We undertake a general study of h-ideals and u-ideals. For example we show that if a separable Banach space X is an h-ideal in X** then X has the complex form of Pełczyński’s property (u) with constant one and the Baire-one functions Ba(X) in X** are complemented by an hermitian projection; the converse holds under a compatibility condition which is shown to be necessary. We relate these ideas to the more familiar notion of an M-ideal, and to Banach lattices. We further investigate when, for a separable Banach space X, the ideal of compact operators K(X) is a u-ideal or an h-ideal in ℒ(X) or K(X)**. For example, we show that K(X) is an h-ideal in K(X)** if and only if X has the “unconditional compact approximation property” and X is an M-ideal in X**.

How to cite

top

Godefroy, G., Kalton, N., and Saphar, P.. "Unconditional ideals in Banach spaces." Studia Mathematica 104.1 (1993): 13-59. <http://eudml.org/doc/215957>.

@article{Godefroy1993,
abstract = {We show that a Banach space with separable dual can be renormed to satisfy hereditarily an “almost” optimal uniform smoothness condition. The optimal condition occurs when the canonical decomposition $X*** = X^\{⊥\} ⊕ X*$ is unconditional. Motivated by this result, we define a subspace X of a Banach space Y to be an h-ideal (resp. a u-ideal) if there is an hermitian projection P (resp. a projection P with ∥I-2P∥ = 1) on Y* with kernel $X^\{⊥\}$. We undertake a general study of h-ideals and u-ideals. For example we show that if a separable Banach space X is an h-ideal in X** then X has the complex form of Pełczyński’s property (u) with constant one and the Baire-one functions Ba(X) in X** are complemented by an hermitian projection; the converse holds under a compatibility condition which is shown to be necessary. We relate these ideas to the more familiar notion of an M-ideal, and to Banach lattices. We further investigate when, for a separable Banach space X, the ideal of compact operators K(X) is a u-ideal or an h-ideal in ℒ(X) or K(X)**. For example, we show that K(X) is an h-ideal in K(X)** if and only if X has the “unconditional compact approximation property” and X is an M-ideal in X**.},
author = {Godefroy, G., Kalton, N., Saphar, P.},
journal = {Studia Mathematica},
keywords = {M-ideal; hermitian operator; unconditional convergence; unconditional ideals; summand; principle of local reflexivity; Hermitian operator; unconditional compact approximation property; Banach space with separable dual; renormed; optimal uniform smoothness condition; canonical decomposition; h-ideal; u-ideal; Pełczyński’s property (u); Baire-one functions; Banach lattices; ideal of compact operators},
language = {eng},
number = {1},
pages = {13-59},
title = {Unconditional ideals in Banach spaces},
url = {http://eudml.org/doc/215957},
volume = {104},
year = {1993},
}

TY - JOUR
AU - Godefroy, G.
AU - Kalton, N.
AU - Saphar, P.
TI - Unconditional ideals in Banach spaces
JO - Studia Mathematica
PY - 1993
VL - 104
IS - 1
SP - 13
EP - 59
AB - We show that a Banach space with separable dual can be renormed to satisfy hereditarily an “almost” optimal uniform smoothness condition. The optimal condition occurs when the canonical decomposition $X*** = X^{⊥} ⊕ X*$ is unconditional. Motivated by this result, we define a subspace X of a Banach space Y to be an h-ideal (resp. a u-ideal) if there is an hermitian projection P (resp. a projection P with ∥I-2P∥ = 1) on Y* with kernel $X^{⊥}$. We undertake a general study of h-ideals and u-ideals. For example we show that if a separable Banach space X is an h-ideal in X** then X has the complex form of Pełczyński’s property (u) with constant one and the Baire-one functions Ba(X) in X** are complemented by an hermitian projection; the converse holds under a compatibility condition which is shown to be necessary. We relate these ideas to the more familiar notion of an M-ideal, and to Banach lattices. We further investigate when, for a separable Banach space X, the ideal of compact operators K(X) is a u-ideal or an h-ideal in ℒ(X) or K(X)**. For example, we show that K(X) is an h-ideal in K(X)** if and only if X has the “unconditional compact approximation property” and X is an M-ideal in X**.
LA - eng
KW - M-ideal; hermitian operator; unconditional convergence; unconditional ideals; summand; principle of local reflexivity; Hermitian operator; unconditional compact approximation property; Banach space with separable dual; renormed; optimal uniform smoothness condition; canonical decomposition; h-ideal; u-ideal; Pełczyński’s property (u); Baire-one functions; Banach lattices; ideal of compact operators
UR - http://eudml.org/doc/215957
ER -

References

top
  1. [1] E. M. Alfsen and E. G. Effros, Structure in real Banach spaces I, Ann. of Math. 96 (1972), 98-128. Zbl0248.46019
  2. [2] T. Ando, A theorem on nonempty intersection of convex sets and its application, J. Approx. Theory 13 (1975), 158-166. Zbl0291.46012
  3. [3] C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164. 
  4. [4] F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and Elements of Normed Algebras, London Math. Soc. Lecture Note Ser. 2, Cambridge Univ. Press, 1971. Zbl0207.44802
  5. [5] F. F. Bonsall and J. Duncan, Numerical Ranges II, London Math. Soc. Lecture Note Ser. 10, Cambridge Univ. Press, 1973. Zbl0262.47001
  6. [6] R. Bourgin, Geometric Aspects of Convex Sets with the Radon-Nikodym Property, Lecture Notes in Math. 993, Springer, Berlin 1983. Zbl0512.46017
  7. [7] R. E. Brackebush, James space on general trees, J. Funct. Anal. 79 (1988), 446-475. Zbl0655.46017
  8. [8] J. C. Cabello-Piñar, J. F. Mena-Jurado, R. Payá-Albert and A. Rodríguez-Palacios, Banach spaces which are absolute subspaces in their biduals, Quart. J. Math. Oxford 42 (1991), 175-182. Zbl0763.46009
  9. [9] P. G. Casazza, The commuting BAP for Banach spaces, in: Analysis at Urbana II, E. Berkson, N. T. Peck and J. J. Uhl (eds.), London Math. Soc. Lecture Note Ser. 138, Cambridge Univ. Press, 1989, 108-127. 
  10. [10] P. G. Casazza and N. J. Kalton, Notes on approximation properties in separable Banach spaces, in: Geometry of Banach Spaces, P. F. X. Müller and W. Schachermayer (eds.), London Math. Soc. Lecture Note Ser. 158, Cambridge Univ. Press, 1990, 49-63. Zbl0743.41027
  11. [11] C. H. Cho and W. B. Johnson, A characterization of subspaces X of l p for which K(X) is an M-ideal in L(X), Proc. Amer. Math. Soc. 93 (1985), 466-470. Zbl0537.47010
  12. [12] M. D. Choi and E. G. Effros, Lifting problems and the cohomology of C*-algebras, Canad. J. Math. 29 (1977), 1092-1101. Zbl0374.46053
  13. [13] M. D. Choi and E. G. Effros, The completely positive lifting problem for C*-algebras, Ann. of Math. 104 (1976), 585-609. Zbl0361.46067
  14. [14] W. J. Davis and W. B. Johnson, A renorming of nonreflexive Banach spaces, Proc. Amer. Math. Soc. 37 (1973), 486-488. Zbl0259.46014
  15. [15] M. Fabian and G. Godefroy, The dual of every Asplund space admits a projectional resolution of the identity, Studia Math. 91 (1988), 141-151. Zbl0692.46012
  16. [16] T. Figiel, W. B. Johnson and L. Tzafriri, On Banach lattices and spaces having local unconditional structure with applications to Lorentz spaces, J. Approx. Theory 13 (1975), 395-412. Zbl0307.46007
  17. [17] C. Finet, Basic sequences and smooth norms in Banach spaces, Studia Math. 89 (1988), 1-9. Zbl0662.46016
  18. [18] C. Finet and W. Schachermayer, Equivalent norms on separable Asplund spaces, ibid. 92 (1989), 275-283. Zbl0692.46013
  19. [19] P. Flinn, On a theorem of N. J. Kalton and G. V. Wood concerning 1-complemented subspaces of spaces having an orthonormal basis, in: Texas Functional Analysis Seminar 1983-1984, Longhorn Notes, Univ. of Texas Press, Austin, Tex., 1984, 135-144. 
  20. [20] N. Ghoussoub, G. Godefroy, B. Maurey and W. Schachermayer, Some topological and geometrical structures in Banach spaces, Mem. Amer. Math. Soc. 378 (1987). Zbl0651.46017
  21. [21] N. Ghoussoub and W. B. Johnson, Factoring operators through Banach lattices not containing C(0,1), Math. Z. 194 (1987), 153-171. Zbl0618.46025
  22. [22] G. Godefroy, Espaces de Banach: Existence et unicité de certains préduaux, Ann. Inst. Fourier (Grenoble) 28 (3) (1978), 87-105. Zbl0368.46015
  23. [23] G. Godefroy, Points de Namioka, espaces normants, applications à la théorie isométrique de la dualité, Israel J. Math. 38 (1981), 209-220. Zbl0453.46018
  24. [24] G. Godefroy, Parties admissibles d'un espace de Banach. Applications, Ann. Sci. Ecole Norm. Sup. 16 (1983), 109-122. Zbl0544.46011
  25. [25] G. Godefroy, Sous-espaces bien disposés de L 1 -applications, Trans. Amer. Math. Soc. 286 (1984), 227-249. Zbl0521.46012
  26. [26] G. Godefroy and N. J. Kalton, The ball topology and its applications, in: Contemp. Math. 85, Amer. Math. Soc., 1989, 195-237. Zbl0676.46003
  27. [27] G. Godefroy and D. Li, Banach spaces which are M-ideals in their bidual have property (u), Ann. Inst. Fourier (Grenoble) 39 (2) (1989), 361-371. Zbl0659.46014
  28. [28] G. Godefroy and D. Li, Some natural families of M-ideals, Math. Scand. 66 (1990), 249-263. Zbl0687.46010
  29. [29] G. Godefroy and F. Lust-Piquard, Some applications of geometry of Banach spaces to harmonic analysis, Colloq. Math. 60//61 (1990), 443-456. Zbl0759.46019
  30. [30] G. Godefroy and P. Saab, Weakly unconditionally convergent series in M-ideals, Math. Scand. 64 (1989), 307-318. Zbl0676.46006
  31. [31] G. Godefroy and P. D. Saphar, Duality in spaces of operators and smooth norms on Banach spaces, Illinois J. Math. 32 (1988), 672-695. Zbl0631.46015
  32. [32] B. V. Godun, Unconditional bases and spanning basic sequences, Izv. Vyssh. Uchebn. Zaved. Mat. 24 (1980), 69-72. Zbl0465.46004
  33. [33] B. V. Godun, Equivalent norms on non-reflexive Banach spaces, Soviet Math. Dokl. 265 (1982), 12-15. Zbl0517.46011
  34. [34] P. Harmand, D. Werner and W. Werner, M-Ideals in Banach Spaces and Banach Algebras, to appear. Zbl0789.46011
  35. [35] P. Harmand and Å. Lima, Banach spaces which are M-ideals in their biduals, Trans. Amer. Math. Soc. 283 (1984), 253-264. Zbl0545.46009
  36. [36] R. Haydon, Some more characterizations of Banach spaces containing l 1 , Math. Proc. Cambridge Philos. Soc. 80 (1976), 269-276. Zbl0335.46011
  37. [37] R. Haydon and B. Maurey, On Banach spaces with strongly separable types, J. London Math. Soc. 33 (1986), 484-498. Zbl0626.46008
  38. [38] S. Heinrich and P. Mankiewicz, Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces, Studia Math. 73 (1982), 225-251. Zbl0506.46008
  39. [39] J. Hennefeld, M-ideals, HB-subspaces, and compact operators, Indiana Univ. Math. J. 28 (1979), 927-934. Zbl0464.46020
  40. [40] R. C. James, Uniformly non-square Banach spaces, Ann. of Math. 80 (1964), 542-550. Zbl0132.08902
  41. [41] W. B. Johnson and M. Zippin, On subspaces of quotients of ( G n ) l p and ( G n ) c 0 , Israel J. Math. 13 (1972), 311-316. 
  42. [42] N. J. Kalton, Spaces of compact operators, Math. Ann. 208 (1974), 267-278. Zbl0266.47038
  43. [43] N. J. Kalton, Locally complemented subspaces and p -spaces for 0 < p < 1, Math. Nachr. 115 (1984), 71-97. Zbl0568.46013
  44. [44] N. J. Kalton, M-ideals of compact operators, Illinois J. Math., to appear. Zbl0824.46029
  45. [45] N. J. Kalton and G. V. Wood, Orthonormal systems in Banach spaces and their applications, Math. Proc. Cambridge Philos. Soc. 79 (1976), 493-510. Zbl0327.46022
  46. [46] H. Knaust and E. Odell, On c 0 sequences in Banach spaces, Israel J. Math. 67 (1989), 153-169. Zbl0731.46007
  47. [47] D. Li, Quantitative unconditionality of Banach spaces E for which K(E) is an M-ideal in ℒ(E), Studia Math. 96 (1990), 39-50. Zbl0721.46013
  48. [48] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Vol. 1, Sequence Spaces, Springer, Berlin 1977. Zbl0362.46013
  49. [49] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Vol. II, Function Spaces, Springer, Berlin 1979. Zbl0403.46022
  50. [50] B. Maurey, Types and 1 -subspaces, in: Texas Functional Analysis Seminar 1982-1983, Longhorn Notes, Univ. of Texas Press, Austin, Tex., 1983, 123-137. 
  51. [51] E. Odell and H. P. Rosenthal, A double-dual characterization of separable Banach spaces containing l 1 , Israel J. Math. 20 (1975), 375-384. Zbl0312.46031
  52. [52] A. Pełczyński and P. Wojtaszczyk, Banach spaces with finite dimensional expansions of identity and universal bases of finite dimensional subspaces, Studia Math. 40 (1971), 91-108. Zbl0221.46014
  53. [53] C. J. Read, Different forms of the approximation property, to appear. 
  54. [54] H. P. Rosenthal, A characterization of c 0 and some remarks concerning the Grothendieck property, in: Texas Functional Analysis Seminar 1982-1983, Longhorn Notes, Univ. of Texas Press, Austin, Tex., 1983, 95-108. 
  55. [55] H. P. Rosenthal, On one-complemented subspaces of complex Banach spaces with a one-unconditional basis, according to Kalton and Wood, GAFA, Israel Seminar, IX, 1983-1984. 
  56. [56] H. H. Schaefer, Banach Lattices and Positive Operators, Springer, Berlin 1974. Zbl0296.47023
  57. [57] A. Sersouri, Propriété (u) dans les espaces d'opérateurs, Bull. Polish Acad. Sci. 36 (1988), 655-659. Zbl0622.46007
  58. [58] B. Sims and D. Yost, Linear Hahn-Banach extension operators, Proc. Edinburgh Math. Soc. 32 (1989), 53-57. Zbl0648.46004
  59. [59] A. M. Sinclair, The norm of a hermitian element in a Banach algebra, Proc. Amer. Math. Soc. 28 (1971), 446-450. Zbl0242.46035
  60. [60] I. Singer, Bases in Banach Spaces, Vol. II, Springer, Berlin 1981. 
  61. [61] M. Takesaki, On the conjugate space of operator algebra, Tôhoku Math. J. 10 (1958), 194-203. Zbl0089.10703
  62. [62] M. Talagrand, Dual Banach lattices and Banach lattices with the Radon-Nikodym property, Israel J. Math. 38 (1981), 46-50. Zbl0459.46013
  63. [63] D. Werner, Remarks on M-ideals of compact operators, Quart. J. Math. Oxford 41 (1990), 501-508. Zbl0722.47036
  64. [64] M. Zippin, Banach spaces with separable duals, Trans. Amer. Math. Soc. 310 (1988), 371-379. Zbl0706.46015

Citations in EuDML Documents

top
  1. Ăsvald Lima, Property (wM*) and the unconditional metric compact approximation property
  2. J. Cabello, E. Nieto, An ideal characterization of when a subspace of certain Banach spaces has the metric compact approximation property
  3. Kamil John, On a result of J. Johnson
  4. Eve Oja, Märt Põldvere, On subspaces of Banach spaces where every functional has a unique norm-preserving extension
  5. Kamil John, Dirk Werner, M -ideals of compact operators into p
  6. Sophie Grivaux, Jan Rychtář, Invariant subspaces of X * * under the action of biconjugates
  7. Trond A. Abrahamsen, Asvald Lima, Vegard Lima, Unconditional ideals of finite rank operators
  8. Kamil John, U-ideals of factorable operators
  9. Åsvald Lima, Eve Oja, Ideals of finite rank operators, intersection properties of balls, and the approximation property
  10. Giovanni Emmanuele, Kamil John, Uncomplementability of spaces of compact operators in larger spaces of operators

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.