Invariant subspaces of under the action of biconjugates
Czechoslovak Mathematical Journal (2006)
- Volume: 56, Issue: 1, page 61-77
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGrivaux, Sophie, and Rychtář, Jan. "Invariant subspaces of $X^{**}$ under the action of biconjugates." Czechoslovak Mathematical Journal 56.1 (2006): 61-77. <http://eudml.org/doc/31017>.
@article{Grivaux2006,
abstract = {We study conditions on an infinite dimensional separable Banach space $X$ implying that $X$ is the only non-trivial invariant subspace of $X^\{**\}$ under the action of the algebra $\mathbb \{A\}(X)$ of biconjugates of bounded operators on $X$: $\mathbb \{A\}(X)=\lbrace T^\{**\}\: T \in \mathcal \{B\}(X)\rbrace $. Such a space is called simple. We characterize simple spaces among spaces which contain an isomorphic copy of $c_\{0\}$, and show in particular that any space which does not contain $\ell _1$ and has property (u) of Pelczynski is simple.},
author = {Grivaux, Sophie, Rychtář, Jan},
journal = {Czechoslovak Mathematical Journal},
keywords = {algebras of operators with only one non-trivial invariant subspace; invariant subspaces under the action of the algebra of biconjugates operators; transitivity; property (u) of Pelczynski; algebras of operators with only one non-trivial invariant subspace; transitivity},
language = {eng},
number = {1},
pages = {61-77},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Invariant subspaces of $X^\{**\}$ under the action of biconjugates},
url = {http://eudml.org/doc/31017},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Grivaux, Sophie
AU - Rychtář, Jan
TI - Invariant subspaces of $X^{**}$ under the action of biconjugates
JO - Czechoslovak Mathematical Journal
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 1
SP - 61
EP - 77
AB - We study conditions on an infinite dimensional separable Banach space $X$ implying that $X$ is the only non-trivial invariant subspace of $X^{**}$ under the action of the algebra $\mathbb {A}(X)$ of biconjugates of bounded operators on $X$: $\mathbb {A}(X)=\lbrace T^{**}\: T \in \mathcal {B}(X)\rbrace $. Such a space is called simple. We characterize simple spaces among spaces which contain an isomorphic copy of $c_{0}$, and show in particular that any space which does not contain $\ell _1$ and has property (u) of Pelczynski is simple.
LA - eng
KW - algebras of operators with only one non-trivial invariant subspace; invariant subspaces under the action of the algebra of biconjugates operators; transitivity; property (u) of Pelczynski; algebras of operators with only one non-trivial invariant subspace; transitivity
UR - http://eudml.org/doc/31017
ER -
References
top- 10.1016/S1874-5849(03)80030-X, Handbook of the geometry of Banach spaces, Vol. 2. North Holland, Amsterdam (2003), 1007–1069. (2003) MR1999190DOI10.1016/S1874-5849(03)80030-X
- 10.4153/CJM-1975-131-3, Canad. J. Math. 27 (1975), 1263–1270. (1975) MR0399817DOI10.4153/CJM-1975-131-3
- 10.5802/aif.1170, Ann. Inst. Fourier. 39 (1989), 361–371. (1989) Zbl0659.46014MR1017283DOI10.5802/aif.1170
- 10.7146/math.scand.a-12260, Math. Scand. 64 (1989), 307–318. (1989) MR1037465DOI10.7146/math.scand.a-12260
- Nouvelles classes d’espaces de Banach à prédual unique, Séminaire d’analyse fonctionnelle École Polytechnique, Exposé (année 1980–1981).
- Existence and uniqueness of isometric preduals: a survey, Banach space theory (Iowa City, IA, 1987), Contemp. Math. 85 (1989), 131–193. (1989) MR0983385
- Unconditional ideals in Banach spaces, Studia Math. 104 (1993), 13–59. (1993) MR1208038
- Functional Analysis and Infinite Dimensional Geometry. CMS books in Mathematics/Ouvrages de Mathématiques de la SMC, Vol. 8, Springer-Verlag, New York, 2001. (2001) MR1831176
- On certain classes of Baire-1 functions with applications to Banach space theory, Functional Analysis, Springer-Verlag, , 1991, pp. 1–35. (1991) MR1126734
- 10.2307/1969430, Annals of Math. 52 (1950), 518–527. (1950) Zbl0039.12202MR0039915DOI10.2307/1969430
- A classification of Baire class 1 functions, Trans. Amer. Math. Soc. 318 (1990), 209–236. (1990) MR0946424
- 10.1007/BF02787401, Israel J. Math 134 (2003), 1–28. (2003) MR1972173DOI10.1007/BF02787401
- 10.1093/qmath/47.1.59, Quart. J. Math. Oxford 47 (1996), 59–71. (1996) MR1380950DOI10.1093/qmath/47.1.59
- 10.4064/sm-54-1-81-105, Studia Math. 54 (1975), 81–105. (1975) MR0390720DOI10.4064/sm-54-1-81-105
- Classical Banach Spaces. I. Sequence Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin-Heidelberg-New York, 1977. (1977) MR0500056
- Classical Banach Spaces. II. Function Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 97, Springer-Verlag, Berlin-Heidelberg-New York, 1979. (1979) MR0540367
- 10.1007/BF02760341, Israel J. Math. 20 (1975), 375–384. (1975) MR0377482DOI10.1007/BF02760341
- A connection between weakly unconditional convergence and weak completeness of Banach spaces, Bull. Acad. Pol. Sci. 6 (1958), 251–253. (1958) MR0115072
- General Theory of Banach Algebras, Van Nostrand, , 1960. (1960) Zbl0095.09702MR0115101
- 10.1073/pnas.71.6.2411, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411–2413. (1974) MR0358307DOI10.1073/pnas.71.6.2411
- A characterization of Banach spaces containing , J. Amer. Math. Soc. 7 (1994), 707–748. (1994) MR1242455
- On James’ type spaces, Trans. Amer. Math. Soc. 310 (1988), 715–745. (1988) Zbl0706.46021MR0973175
- A note of the Lavrentiev index for quasi-reflexive Banach spaces. Banach space theory (Iowa City, IA, 1987), Contemp. Math. 85 (1989), 497–508. (1989) MR0983401
- Banach spaces for analysts. Cambridge studies in Advanced Mathematics, Vol. 25, Cambridge University Press, 1991. (1991) MR1144277
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.