Invariant subspaces of X * * under the action of biconjugates

Sophie Grivaux; Jan Rychtář

Czechoslovak Mathematical Journal (2006)

  • Volume: 56, Issue: 1, page 61-77
  • ISSN: 0011-4642

Abstract

top
We study conditions on an infinite dimensional separable Banach space X implying that X is the only non-trivial invariant subspace of X * * under the action of the algebra 𝔸 ( X ) of biconjugates of bounded operators on X : 𝔸 ( X ) = { T * * T ( X ) } . Such a space is called simple. We characterize simple spaces among spaces which contain an isomorphic copy of c 0 , and show in particular that any space which does not contain 1 and has property (u) of Pelczynski is simple.

How to cite

top

Grivaux, Sophie, and Rychtář, Jan. "Invariant subspaces of $X^{**}$ under the action of biconjugates." Czechoslovak Mathematical Journal 56.1 (2006): 61-77. <http://eudml.org/doc/31017>.

@article{Grivaux2006,
abstract = {We study conditions on an infinite dimensional separable Banach space $X$ implying that $X$ is the only non-trivial invariant subspace of $X^\{**\}$ under the action of the algebra $\mathbb \{A\}(X)$ of biconjugates of bounded operators on $X$: $\mathbb \{A\}(X)=\lbrace T^\{**\}\: T \in \mathcal \{B\}(X)\rbrace $. Such a space is called simple. We characterize simple spaces among spaces which contain an isomorphic copy of $c_\{0\}$, and show in particular that any space which does not contain $\ell _1$ and has property (u) of Pelczynski is simple.},
author = {Grivaux, Sophie, Rychtář, Jan},
journal = {Czechoslovak Mathematical Journal},
keywords = {algebras of operators with only one non-trivial invariant subspace; invariant subspaces under the action of the algebra of biconjugates operators; transitivity; property (u) of Pelczynski; algebras of operators with only one non-trivial invariant subspace; transitivity},
language = {eng},
number = {1},
pages = {61-77},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Invariant subspaces of $X^\{**\}$ under the action of biconjugates},
url = {http://eudml.org/doc/31017},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Grivaux, Sophie
AU - Rychtář, Jan
TI - Invariant subspaces of $X^{**}$ under the action of biconjugates
JO - Czechoslovak Mathematical Journal
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 1
SP - 61
EP - 77
AB - We study conditions on an infinite dimensional separable Banach space $X$ implying that $X$ is the only non-trivial invariant subspace of $X^{**}$ under the action of the algebra $\mathbb {A}(X)$ of biconjugates of bounded operators on $X$: $\mathbb {A}(X)=\lbrace T^{**}\: T \in \mathcal {B}(X)\rbrace $. Such a space is called simple. We characterize simple spaces among spaces which contain an isomorphic copy of $c_{0}$, and show in particular that any space which does not contain $\ell _1$ and has property (u) of Pelczynski is simple.
LA - eng
KW - algebras of operators with only one non-trivial invariant subspace; invariant subspaces under the action of the algebra of biconjugates operators; transitivity; property (u) of Pelczynski; algebras of operators with only one non-trivial invariant subspace; transitivity
UR - http://eudml.org/doc/31017
ER -

References

top
  1. 10.1016/S1874-5849(03)80030-X, Handbook of the geometry of Banach spaces, Vol. 2. North Holland, Amsterdam (2003), 1007–1069. (2003) MR1999190DOI10.1016/S1874-5849(03)80030-X
  2. 10.4153/CJM-1975-131-3, Canad. J.  Math. 27 (1975), 1263–1270. (1975) MR0399817DOI10.4153/CJM-1975-131-3
  3. 10.5802/aif.1170, Ann. Inst. Fourier. 39 (1989), 361–371. (1989) Zbl0659.46014MR1017283DOI10.5802/aif.1170
  4. 10.7146/math.scand.a-12260, Math. Scand. 64 (1989), 307–318. (1989) MR1037465DOI10.7146/math.scand.a-12260
  5. Nouvelles classes d’espaces de Banach à prédual unique, Séminaire d’analyse fonctionnelle École Polytechnique, Exposé  (année 1980–1981). 
  6. Existence and uniqueness of isometric preduals: a survey, Banach space theory (Iowa City,  IA,  1987), Contemp. Math. 85 (1989), 131–193. (1989) MR0983385
  7. Unconditional ideals in Banach spaces, Studia Math. 104 (1993), 13–59. (1993) MR1208038
  8. Functional Analysis and Infinite Dimensional Geometry. CMS  books in Mathematics/Ouvrages de Mathématiques de la  SMC, Vol.  8, Springer-Verlag, New York, 2001. (2001) MR1831176
  9. On certain classes of Baire-1 functions with applications to Banach space theory, Functional Analysis, Springer-Verlag, , 1991, pp. 1–35. (1991) MR1126734
  10. 10.2307/1969430, Annals of Math. 52 (1950), 518–527. (1950) Zbl0039.12202MR0039915DOI10.2307/1969430
  11. A classification of Baire class 1  functions, Trans. Amer. Math. Soc. 318 (1990), 209–236. (1990) MR0946424
  12. 10.1007/BF02787401, Israel J.  Math 134 (2003), 1–28. (2003) MR1972173DOI10.1007/BF02787401
  13. 10.1093/qmath/47.1.59, Quart. J.  Math. Oxford 47 (1996), 59–71. (1996) MR1380950DOI10.1093/qmath/47.1.59
  14. 10.4064/sm-54-1-81-105, Studia Math. 54 (1975), 81–105. (1975) MR0390720DOI10.4064/sm-54-1-81-105
  15. Classical Banach Spaces. I. Sequence Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band  92, Springer-Verlag, Berlin-Heidelberg-New York, 1977. (1977) MR0500056
  16. Classical Banach Spaces. II. Function Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band  97, Springer-Verlag, Berlin-Heidelberg-New York, 1979. (1979) MR0540367
  17. 10.1007/BF02760341, Israel J.  Math. 20 (1975), 375–384. (1975) MR0377482DOI10.1007/BF02760341
  18. A connection between weakly unconditional convergence and weak completeness of Banach spaces, Bull. Acad. Pol. Sci. 6 (1958), 251–253. (1958) MR0115072
  19. General Theory of Banach Algebras, Van Nostrand, , 1960. (1960) Zbl0095.09702MR0115101
  20. 10.1073/pnas.71.6.2411, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411–2413. (1974) MR0358307DOI10.1073/pnas.71.6.2411
  21. A characterization of Banach spaces containing  c 0 , J.  Amer. Math. Soc. 7 (1994), 707–748. (1994) MR1242455
  22. On James’ type spaces, Trans. Amer. Math. Soc. 310 (1988), 715–745. (1988) Zbl0706.46021MR0973175
  23. A note of the Lavrentiev index for quasi-reflexive Banach spaces. Banach space theory (Iowa City, IA,  1987), Contemp. Math. 85 (1989), 497–508. (1989) MR0983401
  24. Banach spaces for analysts. Cambridge studies in Advanced Mathematics, Vol. 25, Cambridge University Press, 1991. (1991) MR1144277

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.