Complex-symmetric spaces
Annales de l'institut Fourier (1989)
- Volume: 39, Issue: 2, page 373-416
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topLehmann, Ralf. "Complex-symmetric spaces." Annales de l'institut Fourier 39.2 (1989): 373-416. <http://eudml.org/doc/74835>.
@article{Lehmann1989,
abstract = {A compact complex space $X$ is called complex-symmetric with respect to a subgroup $G$ of the group $\{\rm Aut\}_0(X)$, if each point of $X$ is isolated fixed point of an involutive automorphism of $G$. It follows that $G$ is almost $G^0$-homogeneous. After some examples we classify normal complex-symmetric varieties with $G^0$ reductive. It turns out that $X$ is a product of a Hermitian symmetric space and a compact torus embedding satisfying some additional conditions. In the smooth case these torus embeddings are classified using the description of torus embeddings by systems of cone (“fans”) and the theory of Coxeter groups.},
author = {Lehmann, Ralf},
journal = {Annales de l'institut Fourier},
keywords = {almost-homogeneous spaces; almost-homogeneous varieties; fans; holomorphic involutions; spherical varieties; toric varieties; torus embeddings; Coxeter groups},
language = {eng},
number = {2},
pages = {373-416},
publisher = {Association des Annales de l'Institut Fourier},
title = {Complex-symmetric spaces},
url = {http://eudml.org/doc/74835},
volume = {39},
year = {1989},
}
TY - JOUR
AU - Lehmann, Ralf
TI - Complex-symmetric spaces
JO - Annales de l'institut Fourier
PY - 1989
PB - Association des Annales de l'Institut Fourier
VL - 39
IS - 2
SP - 373
EP - 416
AB - A compact complex space $X$ is called complex-symmetric with respect to a subgroup $G$ of the group ${\rm Aut}_0(X)$, if each point of $X$ is isolated fixed point of an involutive automorphism of $G$. It follows that $G$ is almost $G^0$-homogeneous. After some examples we classify normal complex-symmetric varieties with $G^0$ reductive. It turns out that $X$ is a product of a Hermitian symmetric space and a compact torus embedding satisfying some additional conditions. In the smooth case these torus embeddings are classified using the description of torus embeddings by systems of cone (“fans”) and the theory of Coxeter groups.
LA - eng
KW - almost-homogeneous spaces; almost-homogeneous varieties; fans; holomorphic involutions; spherical varieties; toric varieties; torus embeddings; Coxeter groups
UR - http://eudml.org/doc/74835
ER -
References
top- [A] D. N. AHIEZER, On Algebraic Varieties that are Symmetric in the Sense of Borel, Sov. Math. Dokl., 30 (1984), 579-582. Zbl0589.32052
- [BB] A. BIALYNICKI-BIRULA, Some Theorems on Actions of Algebraic Groups, Ann. Math., 98 (1973), 480-497. Zbl0275.14007MR51 #3186
- [Bo] A. BOREL, Symmetric Compact Complex Spaces. Arch. Math., 33 (1979), 49-56. Zbl0423.32015MR80k:32033
- [B-L-V] M. BRION, D. LUNA, T. VUST, Espaces homogènes sphériques, Inv. Math., 84 (1986), 617-632. Zbl0604.14047MR87g:14057
- [B-P] M. BRION, F. PAUER, Valuations des espaces homogènes sphériques, Comm. Math. Helv., 62 (1987), 265-285. Zbl0627.14038MR88h:14051
- [Ca] E. CARTAN, uvres Complètes, Gauthier-Villars, Paris, 1952.
- [Car] H. CARTAN, Quotients of Complex Analytic Spaces, Contributions to Function Theory, Bombay, 1960. Zbl0122.08702MR25 #3199
- [Cox] H. S. M. COXETER, Discrete Groups Generated by Reflections, Ann. Math., 35 (1934), 588-621. Zbl0010.01101JFM60.0898.02
- [Dan] V. I. DANILOV, The Geometry of Toric Varieties, Russian Math. Surveys, 33 (1978), 97-154. Zbl0425.14013MR80g:14001
- [EGA] A. GROTHENDIECK, J. A. DIEUDONNÉ, Éléments de Géométrie Algébrique, Presses Universitaires de France, Paris, 1967.
- [G-B] L. C. GROVE, C. T. BENSON, Finite Reflection Groups. Graduate Texts in Mathematics, 99, Springer, New York, 1985. Zbl0579.20045MR85m:20001
- [G-R] R. C. GUNNING, H. ROSSI, Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs, 1965. Zbl0141.08601MR31 #4927
- [Hel] S. HELGASON, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962. Zbl0111.18101MR26 #2986
- [Ho] H. HOLMANN, Komplexe Räume mit komplexen Transformationsgruppen, Math. Ann., 150 (1963), 327-359. Zbl0156.30603MR27 #776
- [H-O] A. T. HUCKLEBERRY, E. OELJEKLAUS, Classification Theorems for Almost Homogeneous Spaces, Institut Elie Cartan, 9 (1984). Zbl0549.32024MR86g:32050
- [Jän] K. JÄNICH, Differenzierbare G-Mannigfaltigkeiten, Springer, Berlin, 1968. Zbl0159.53701
- [K] W. KAUP, Bounded Symmetric Domains in Finite and Infinite Dimensions, Several Complex Variables, Cortona (1976-1977), 180-191. Zbl0418.32020MR84b:32045
- [Ko] J. KONARSKI, Decompositions of Normal Algebraic Varieties Determined by an Action of a One-dimensional Torus, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 26 (1978), 295-300. Zbl0394.14019MR81b:14026
- [Kr] H. KRAFT, Geometrische Methoden in der Invariantentheorie, Vieweg, Braunschweig, 1984. Zbl0569.14003MR86j:14006
- [L1] R. LEHMANN, Complex-symmetric Spaces. Dissertation, Bochum, 1988. Zbl0689.14025
- [L2] R. LEHMANN, Complex-symmetric Torus Embeddings. Schriftenreihe d. Fachbereichs Mathematik der Universität Duisburg, 126 (1987).
- [L-V] D. LUNA, T. VUST, Plongements d'espaces homogènes, Comm. Math. Helv., 58 (1983), 186-245. Zbl0545.14010MR85a:14035
- [Ma] Y. MATSUSHIMA, Fibrés holomorphes sur un tore complexe, Nag. Math. J., 14 (1959), 1-24. Zbl0095.36702MR21 #1403
- [Mon] D. MONTGOMERY, Simply Connected Homogeneous Spaces, Proc. Am. Math. Soc., 1 (1950), 467-469. Zbl0041.36309MR12,242c
- [Mo] G. D. MOSTOW, Self-adjoint Groups, Ann. Math., (2), 62 (1955), 44-55. Zbl0065.01404MR16,1088a
- [Oda] T. ODA, Lectures on Torus Embeddings and Applications. Tata Institute of Fundamental Research, Bombay, 1978. Zbl0417.14043MR81e:14001
- [P] J. POTTERS, On Almost Homogeneous Compact Complex Surfaces, Inv. Math., 8 (1969), 244-266. Zbl0205.25102MR41 #3808
- [Su] H. SUMIHIRO, Equivariant Completion. J. Math. Kyoto Univ., 14-1 (1974), 1-28. Zbl0277.14008MR49 #2732
- [T-E] G. KEMPF, F. KNUDSEN, D. MUMFORD, B. SAINT-DONAT, Toroidal Embeddings I, Lecture Notes in Mathematics, 339, Springer, Berlin, 1973. Zbl0271.14017MR49 #299
- [V] T. VUST, Opération de groupes réductifs dans un type de cônes presque homogènes, Bull. Soc. Math. France, 102 (1974), 317-333. Zbl0332.22018MR51 #3187
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.